Nitrogen fertiliser and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation

2020 ◽  
Vol 176 (3) ◽  
pp. 314-327
Author(s):  
Raquel Santiago‐Arenas ◽  
Buyung A. Fanshuri ◽  
Sholih N. Hadi ◽  
Hayat Ullah ◽  
Avishek Datta
Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 711 ◽  
Author(s):  
Koffi Djaman ◽  
Valere Mel ◽  
Lamine Diop ◽  
Abdoulaye Sow ◽  
Raafat El-Namaky ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Mousumi Mondal ◽  
Milan Skalicky ◽  
Sourav Garai ◽  
Akbar Hossain ◽  
Sukamal Sarkar ◽  
...  

Peanut (Arachis hypogaea L.) is adorned as the one of the important sources of vegetable oil, protein, vitamins and several minerals, which could mitigate the nutritional gap worldwide. However, peanut cultivation in winter suffers from low temperature stress and knowledge lacuna regarding the optimum dose nitrogen. Therefore, the present investigations were carried out during the winter seasons 2015–2016 and 2016–2017 at the district seed farm of Bidhan Chandra Krishi Viswavidyalaya, an agricultural university in West Bengal, India (23°26’ N, 88°22´ E, elevation 12 m above mean sea level) to facilitate the comprehensive study of plant growth, productivity and profitability of an irrigated peanut crop under varied levels of nitrogen: with and without a rhizobium inoculants and with and without polythene mulch. Quality traits and nutrient dynamics were also itemized. Fertilizing with 100% of the recommended dose of nitrogen combined with rhizobium inoculant and polythene mulch significantly enhanced peanut plant growth, yield and yield-attributing traits, while resulting in the maximum fertilizer (i.e., nitrogen, phosphorus and potassium) uptake by different plant parts. The greatest number of root nodules occurred in the treatment that received 75% of the recommended dose of nitrogen with rhizobium supplementation under polythene mulch, while 50% of the recommended dose of nitrogen with no rhizobium resulted in maximum fertilizer nitrogen use efficiency. Applying the full recommended dose of nitrogen with the rhizobium inoculants and mulch resulted in maximum profitability in the peanut crop.


2016 ◽  
Vol 186 ◽  
pp. 18-31 ◽  
Author(s):  
Sharif Ahmed ◽  
Elizabeth Humphreys ◽  
Muhammad Salim ◽  
Bhagirath S. Chauhan

2020 ◽  
Vol 12 (21) ◽  
pp. 8780
Author(s):  
Muhammad Muhaymin Mohd Zuki ◽  
Noraini Md. Jaafar ◽  
Siti Zaharah Sakimin ◽  
Mohd Khanif Yusop

Nitrogen (N) fertilizer is commonly used to supply sufficient N for plant uptake, for which urea is one of the highly preferred synthetic N fertilizers due to its high N content. Unfortunately, N provided by urea is rapidly lost upon urea application to soils through ammonia volatilization, leaching, and denitrification. Thus, treatment of urea with urease inhibitor (N-(n-Butyl) Thiophosphoric Triamide (NBPT)) is among the solutions to slow down urea hydrolysis, therefore reducing loss of NH3 and saving N available for plant uptake and growth. A field study was carried out to evaluate the effects of NBPT-coated urea (NCU) at varying rates on growth, yield, and nitrogen use efficiency (NUE) of maize in tropical soil. The experiment was conducted at Field 15, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, and maize (Zea mays var. Thai Super Sweet) was used as the test crop. The results showed that all maize grown in soils applied with urea coated with NBPT (NCU) (T2, T3, T4, and T5) had significantly (P ≤ 0.05) higher chlorophyll content compared to the control (T0 and T1). The surface leaf area of maize grown in NCU-treated soils at 120 kg N h−1 (T3) was recorded as the highest. NCU at and 96 kg N ha−1 (T3 and T4) were relatively effective in increasing maize plant dry weight, yield, and N uptake. Improvement of NUE by 45% over urea was recorded in the treatment of NCU at 96 kg N ha−1. NBPT-coated urea (NCU) at 96 kg N ha−1 had potential to increase the growth, yield, nitrogen uptake, and NUE of maize by increasing the availability of N for plant growth and development.


Soil Research ◽  
2016 ◽  
Vol 54 (6) ◽  
pp. 767 ◽  
Author(s):  
Nirmali Bordoloi ◽  
K. K. Baruah ◽  
P. Bhattacharyya

Nitrous oxide is a greenhouse gas with high global warming potential emitted from agricultural sources. The effects of tillage practices and different levels of N fertiliser on seasonal fluxes of N2O were investigated in a field planted with the wheat variety Sonalika. The experiment was conducted during 2012–13 and 2013–14 under conventional tillage (CT) and reduced tillage (RT) farming systems in combination with four different levels of nitrogen fertiliser (i.e. zero nitrogen (F1), 60kgNha–1 (F2), 80kgNha–1 (F3) and 100kgNha–1 (F4)). Both tillage practices and fertiliser significantly (P<0.01) affected seasonal cumulative N2O emissions and wheat yield. However, there was no significant difference in N2O emissions between RTF1 and CTF1 (zero nitrogen). Compared with RT, N2O emission decreased under the CT practice by 2.49%, 10.11%, 7.9% and 27.46% in CTF1, CTF2, CTF3 and CTF4 respectively. Highest and lowest seasonal cumulative fluxes were recorded in RTF4 (N 100kgha–1) and CTF1 (N 0kgha–1) respectively. During the wheat-growing period, nitrogen use efficiency decreased with increasing nitrogen levels and treatment with 60 kg-Nha–1 in the CT practice (CTF2) was found to be effective in increasing nitrogen use efficiency and decreasing yield-scaled N2O emissions.


2016 ◽  
Vol 67 (11) ◽  
pp. 1139 ◽  
Author(s):  
Giao N. Nguyen ◽  
Joe Panozzo ◽  
German Spangenberg ◽  
Surya Kant

Nitrogen (N) is a key mineral element required for crop growth, yield and quality. Nitrogen-use efficiency (NUE) in crop plants is low despite significant research efforts. Excessive use of N fertiliser results in significant economic cost and contributes to environmental pollution. Therefore, it is crucial to develop crop varieties with improved NUE, and this requires efficient phenotyping approaches to screen genotypes under defined N conditions. To address this, 15 wheat (Triticum aestivum L.) varieties, grown under three N levels, were phenotyped for NUE-related traits under field conditions. Significant genotypic differences were observed in varieties having low to high responsiveness to N applications. The results suggest that basal low N can be used to screen wheat varieties that are less responsive to N, whereas N supply from 80 to 160 kg N ha–1 could be used to screen high N-responsive varieties. Normalised difference vegetation index (NDVI) measured by using Crop Circle, and SPAD units measured by SPAD meter at heading stage, were well correlated with shoot dry biomass, grain yield, and shoot and grain N concentration, and could potentially be used as tools to phenotype different wheat varieties under varying N treatments. The data also demonstrated that NDVI and SPAD could be used to differentiate wheat varieties phenotypically for NUE-related traits. The prospect of utilising efficient, non-destructive phenotyping to study NUE in crops is also discussed.


2017 ◽  
Vol 5 (2) ◽  
pp. 134-142
Author(s):  
A. EL Sabagh ◽  
◽  
M.A. Majid ◽  
M. Saiful Islam ◽  
M.K. Hasan ◽  
...  

Author(s):  
S. B. Z. Sharna ◽  
S. Islam ◽  
A. Huda ◽  
M. Jahiruddin ◽  
M. R. Islam

Nitrogen is one of the most deficient plant nutrients in Bangladesh soils. The use nitrogenous fertilizer especially urea is a commonly used fertilizer for rice production but its efficiency very low about 30-40% under traditional broadcast method A field experiment was carried out  in the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during Aus rice growing season of 2014 to investigate the effects of prilled urea, urea briquettes and NPK briquettes on the growth, yield, and nitrogen use efficiency of BRRI dhan48. There were six treatments as T1 [check (N0P16K42], T2 [Urea briquette (one-3.4 g) (N52P16K42)], T3 (Urea briquette (one-2.7 g (N78P16K42)], T4 [NPK briquette (one-3.4g)(N51P13K32], T5 [Prilled urea (N78P16K42)] and T6 [NPK briquettes(two-2.4 g briquettes (N78P15K42)]. The experiment was laid out in a Randomized Complete Block Design (RCBD) with six treatments and four replications. Prilled urea was applied in two equal splits application; at 8 days after transplanting (DAT) and the second dose after 38 DAT, while for urea briquettes and NPK briquettes were deep placed (8-10 cm depth) at 8 DAT between four hills at alternate rows. Water samples were collected for every 7 consecutive days and analyzed for NH4-N. The results showed that the NH4-N concentration in floodwater reached to maximum on day 2 in PU treated plots and then decreased  with time, while the urea briquettes and NPK briquettes treated plots slowly produced NH4-N over the growth period. The highest grain yield of 4.75 t ha-1 (69% over control) was obtained in the treatment T3 [Urea briquette (one-2.7g) (N78P16K42)]. The treatment T3 also produced the highest straw yield of 5.49 t ha-1. The maximum apparent N recovery and the maximum N use efficiency were found in the treatment T4 [NPK briquette (one-3.4g) (N51P13K32)]. It appeared that the deep placement of urea briquettes and NPK briquettes reduced N-losses and enhanced the recovery of applied N as well as N use efficiency in comparison with PU application.


Sign in / Sign up

Export Citation Format

Share Document