scholarly journals Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults

Aging Cell ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. e12723 ◽  
Author(s):  
Ameya S Kulkarni ◽  
Erika F Brutsaert ◽  
Valentin Anghel ◽  
Kehao Zhang ◽  
Noah Bloomgarden ◽  
...  
2007 ◽  
Vol 8 (1) ◽  
pp. 108 ◽  
Author(s):  
Bojlul Bahar ◽  
Frank J Monahan ◽  
Aidan P Moloney ◽  
Olaf Schmidt ◽  
David E MacHugh ◽  
...  

Meat Science ◽  
2007 ◽  
Vol 76 (4) ◽  
pp. 682-691 ◽  
Author(s):  
N. Aldai ◽  
A.I. Nájera ◽  
M.E.R. Dugan ◽  
R. Celaya ◽  
K. Osoro

2015 ◽  
Vol 47 ◽  
pp. 412
Author(s):  
Ian D. Connors ◽  
Rachael E. Mott ◽  
Rudra H. Trivedi ◽  
Allison M. Morrison ◽  
Alexandra M. Bishop ◽  
...  

1990 ◽  
Vol 70 (1) ◽  
pp. 199-206 ◽  
Author(s):  
O. ADEOLA ◽  
B. W. McBRIDE ◽  
R. O. BALL ◽  
L. G. YOUNG

Subcutaneous adipose tissue and intercostal and sartorius muscles from five barrows and five gilts at 20 kg liveweight were used to study lipogenesis, lipolysis, Na+, K+-ATPase-dependent respiration and protein synthesis. Lipogenesis rate measured by 14C-acetate incorporation into lipid was similar between barrows and gilts; and 100 μg insulin per mL enhanced (P < 0.1) subcutaneous adipose tissue lipogenesis by 74%. Lipolysis rate quantitated by glycerol release was similar between barrows and gilts (3546 and 4160 nmol g−1 2 h−1). Adenosine deaminase and norepinephrine together enhanced adipose tissue lipolytic response by 102%. Fractional and absolute rates of protein synthesis were similar between barrows and gilts (3.24 and 3.69% d−1; 6.01 and 6.06 mg g−1 d−1); and between intercostal and sartorius muscles. Barrows had lower Na+, K+-ATPase-dependent respiration than gilts and the maintenance of Na+ and K+ transmembrane ionic gradient in the muscle preparations accounted for 23–26% of total respiration. Key words: Pigs, adipose tissue, skeletal muscle, metabolism


2015 ◽  
Vol 71 (10) ◽  
pp. 1273-1280 ◽  
Author(s):  
María Laura Messi ◽  
Tao Li ◽  
Zhong-Min Wang ◽  
Anthony P. Marsh ◽  
Barbara Nicklas ◽  
...  

Author(s):  
Emily J. Arentson-Lantz ◽  
Jasmine Mikovic ◽  
Nisha Bhattarai ◽  
Christopher S. Fry ◽  
Séverine Lamon ◽  
...  

Leucine supplementation attenuates the loss of skeletal muscle mass and function in older adults during bed rest. We sought to determine if leucine could also preserve and/or restore mitochondrial function and muscle oxidative capacity during periods of disuse and rehabilitation. Healthy older adults (69.1 ± 1.1 years) consumed a structured diet with supplemental leucine (LEU: 0.06 g/ kg body weight/ meal; n=8) or alanine (CON: 0.06 g/ kg body weight/meal; n=8) during 7 days of bed rest and 5 days of inpatient rehabilitation. A 75 g oral glucose tolerance test was performed at baseline (PreBR), after bed rest (PostBR) and rehabilitation (PostRehab) and used to calculate an indicator of insulin sensitivity, metabolic clearance rate. (MCR). Tissue samples from the m. vastus lateralis were collected PreBR, PostBR, and PostRehab to assess mitochondrial respiratory capacity and protein markers of the oxidative phosphorylation and a marker of the antioxidant defense systems. During bed rest, leucine tended to preserve insulin sensitivity (Change in MCR, CON vs. LEU: -3.5 ± 0.82 vs LEU: -0.98 ± 0.88, p=0.054), but had no effect on mitochondrial respiratory capacity (Change in State 3+succinate CON vs. LEU -8.7 ± 6.1 vs. 7.3 ± 4.1 pmol O2/sec/mg tissue, p=0.10) Following rehabilitation, leucine increased ATP-linked respiration (CON vs. LEU: -8.9 ± 6.2 vs. 15.5± 4.4 pmol O2/sec/mg tissue, p=0.0042). While the expression of mitochondrial respiratory and antioxidant proteins was not impacted, leucine supplementation preserved specific pathways of mitochondrial respiration, insulin sensitivity and a marker of oxidative stress during bed rest and rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document