Habitual dietary intake of n-3 polyunsaturated fatty acids and leptin gene expression in visceral and subcutaneous adipose tissues of non-diabetic adults

2018 ◽  
Author(s):  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Golaleh Asghari ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  
2020 ◽  
Author(s):  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Golaleh Asghari ◽  
Mehdi Hedayati ◽  
Parvin Mirmiran ◽  
...  

Abstract Background: The aim of the present study was to investigate the association of habitual intake of total fatty acids, saturated-, monounsaturated-, polyunsaturated fatty acids, n-3, n-6, and n-9 fatty acids with apelin gene expression in visceral and subcutaneous adipose tissue. Methods: We obtained visceral and subcutaneous adipose tissues from 179 participants (71 non-obese and 105 obese), who had undergone open abdominal surgery. Dietary intake information was gathered with a valid and reliable food frequency questionnaire. The mRNA expression of apelin gene was analyzed by Real-Time PCR. Results: Apelin gene expression was found to be more increased in subcutaneous and visceral adipose tissues in obese than in non-obese participants. Dietary intake of n-3 and polyunsaturated fatty acids was associated with apelin gene expression in subcutaneous and visceral adipose tissues among all categories of weight status after adjusting for total energy intake. Among obese individuals, visceral adipose tissue apelin mRNA levels were associated with total fat intake. Conclusion: Higher apelin gene expression in adipocytes had an association with habitual intake of total fat and n-3 fatty acids in obese and non-obese individuals, indicating a determinative role of quality and quantity of fatty acid intake in a regular diet in adipose tissue adipokine.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1706-1706
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Catherine B Chan ◽  
Mehdi Hedayati ◽  
Mohammad Safarian ◽  
...  

Abstract Objectives The fat mass and obesity-associated gene (FTO) is a functional candidate gene for type 2 diabetes mellitus (T2DM) and metabolic syndrome, based on evidence from genome-wide association studies (GWAS) that linked it to obesity and metabolic disorders. The FTO gene regulates energy expenditure and intake. We aimed to determine how fatty acid species measured in plasma and dietary intake associate with FTO gene expression in subcutaneous and visceral adipose tissues. Methods In this study, 97 participants aged ≥18 years were selected from patients admitted to the hospital for abdominal surgeries. These underlying disorders leading to surgeries were not expected to alter the habitual dietary intake of participants. Participants with diagnosed diabetes or cancer, under treatment of dyslipidemia or dysglycemia, and being on prescribed or any special diets were excluded. Habitual dietary intake of participants was collected using a valid and reliable food frequency questionnaire (FFQ), from which the intake of fatty acids was quantified. Plasma fatty acids were assessed by gas-liquid chromatography. The mRNA expression of the FTO gene in visceral and subcutaneous adipose tissues obtained by biopsy was measured by real-time quantitative PCR. Results After adjusting for age, HOMA-IR and body mass index, total fatty acid intake was significantly associated with FTO gene expression in visceral (STZβ = 0.208, P = 0.037) and subcutaneous (STZβ = 0.236, P = 0.020) adipose tissues. Dietary intake of MUFA and PUFA had positive significant associations with the expression of FTO in visceral (STZβ = 0.227, P = 0.023; STZβ = 0.346, P < 0.001, respectively) and subcutaneous (STZβ = 0.227, P = 0.026; STZβ = 0.274, P = 0.006, respectively) adipose tissues. There were no significant associations between plasma fatty acids and FTO mRNA expression in either subcutaneous or visceral adipose tissues. Conclusions The association of dietary total fatty acids, MUFA, and PUFA with FTO gene expression in both adipose tissues highlight the importance of dietary fatty acids composition along with total fat intake in relation to FTO gene expression. Funding Sources This study was funded by Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.


Gene ◽  
2020 ◽  
Vol 733 ◽  
pp. 144353
Author(s):  
Golnoosh Kadkhoda ◽  
Maryam Zarkesh ◽  
Atoosa Saidpour ◽  
Masoumeh Hajizadeh Oghaz ◽  
Mehdi Hedayati ◽  
...  

2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document