MicroRNA‐132 is involved in morphine dependence via modifying the structural plasticity of the dentate gyrus neurons in rats

2021 ◽  
Author(s):  
Meng Jia ◽  
Xuewei Wang ◽  
Haolin Zhang ◽  
Xinjuan Wang ◽  
Hui Ma ◽  
...  

2021 ◽  
Author(s):  
Kamal Ranjbar ◽  
Ebrahim Zarrinkalam ◽  
Sara Soleimani Asl ◽  
Iraj Salehi ◽  
Masoumeh Taheri ◽  
...  

Various impacts of exercise on brain performance have been documented following morphine dependence induction; however, the underlying neuronal mechanisms remain unclear. The present research was done to investigate the impact of different exercise training modes on neuronal maturation, and synaptic plasticity in the perforant pathway (PP)-dentate gyrus (DG) synapse in the morphine-dependent rats. Five groups, including a control group (Con, ten healthy rats) and forty morphine-dependent rats were considered as follows (n=10/group):  1) sedentary-dependent (Sed-D); 2) endurance exercise-dependent (En-D); 3) strength exercise-dependent (St-D); and 4) concurrent exercise-dependent (Co-D). The exercise training groups were subjected to endurance, strength, and concurrent training 5 days per week for 10 weeks. After training sessions, the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude in DG were determined in response to high-frequency stimulation (HFS) of the PP. For assessing neurogenesis NeuroD level was evaluated after performing all experiments. Concurrent training increased PS amplitude and EPSP than the control group. NeuroD in the morphine-dependent rats significantly decreased, but concurrent training returned the NeuroD to the healthy rat level. Concurrent training can ameliorate synaptic plasticity impairment in morphine-dependent rats through neurogenesis promotion. According to the results, concurrent training can be an appropriate novel candidate for treating opioid addiction.



Author(s):  
Marco Cambiaghi ◽  
Rosalia Crupi ◽  
Erick Larios Bautista ◽  
Amir Elsamadisi ◽  
Wasib Malik ◽  
...  

Low-frequency repetitive transcranial magnetic stimulation (1-Hz rTMS) is a promising noninvasive tool for the treatment of depression. Hippocampal neuronal plasticity is thought to play a pivotal role in the pathophysiology of depressive disorders and the mechanism of action of antidepressant treatments. We investigated the effect of 1-Hz rTMS treatment on hippocampal dentate gyrus structural plasticity and related emotional behaviors modifications. Experimentally, adult male mice received either five days of 1-Hz rTMS or Sham stimulation. After stimulation, the mice underwent a battery of tests for anxiety-like and depression-like behaviors. We also tested the effect of treatment on mature and newly generated granule cell dendritic complexity. Our data showed that 1-Hz rTMS induced structural plasticity in mature granule cells, as evidenced by increased dendritic length and number of intersections. However, the stimulation did not increase the proliferation of the dentate gyrus progenitor cells. On the contrary, the stimulated mice showed increased dendritic complexity of newly generated neurons. Moreover, 1-Hz rTMS resulted in antidepressant-like effects in the tail suspension test, but it did not affect anxiety-like behaviors. Therefore, our results indicate that 1-Hz rTMS modulates dentate gyrus morphological plasticity in mature and newly generated neurons. Furthermore, our data provide some evidence of an association between the antidepressant-like activity of 1-Hz rTMS and structural plasticity in the hippocampus.



Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2853-2869 ◽  
Author(s):  
Di Zhang ◽  
Xuezhen Wang ◽  
Xin-Yun Lu

The hippocampus, a brain region critical for learning, memory and emotional processing, maintains its capacity to undergo structural plasticity throughout life. Hippocampal structural plasticity can be modulated by a number of intrinsic and extrinsic factors. This study investigated the effects of adiponectin, an adipocyte-derived hormone, on dendritic growth, arborization, and spinogenesis in mature granule neurons of the hippocampal dentate gyrus generated during embryonic (early-born) or early postnatal (late-born) stages. We found that adiponectin deficiency reduced dendritic length, branching and spine density of granule neurons. The reduction was more evident in early-born granule neurons than in late-born granule neurons. Intracerebroventricular infusion of adiponectin for 1 week increased of dendritic spines and arbor complexity in late-born granule neurons. Moreover, adiponectin deficiency decreased the production of adult-born new granule neurons through suppressing neural progenitor cell proliferation and differentiation, whereas intracerebroventricular adiponectin infusion increased the proliferation of neural progenitor cells in adult dentate gyrus. These results suggest that adiponectin plays an important role in dendritic spine remodeling and neurogenesis in the dentate gyrus.



2018 ◽  
Vol 20 (1) ◽  
pp. 73 ◽  
Author(s):  
Gerardo Ramírez-Rodríguez ◽  
Sandra Olvera-Hernández ◽  
Nelly Vega-Rivera ◽  
Leonardo Ortiz-López

Melatonin, the main product synthesized by the pineal gland, acts as a regulator of the generation of new neurons in the dentate gyrus (DG). Newborn neurons buffer the deleterious effects of stress and are involved in learning and memory processes. Furthermore, melatonin, through the regulation of the cytoskeleton, favors dendrite maturation of newborn neurons. Moreover, newborn neurons send their axons via the mossy fiber tract to Cornu Ammonis 3 (CA3) region to form synapses with pyramidal neurons. Thus, axons of newborn cells contribute to the mossy fiber projection and their plasticity correlates with better performance in several behavioral tasks. Thus, in this study, we analyzed the impact of exogenous melatonin (8 mg/kg) administered daily for one- or six-months on the structural plasticity of infrapyramidal- and suprapyramidal mossy fiber projection of granule cells in the DG in male Balb/C mice. We analyzed the mossy fiber projection through the staining of calbindin, that is a calcium-binding protein localized in dendrites and axons. We first found an increase in the number of calbindin-positive cells in the granular cell layer in the DG (11%, 33%) after treatment. Futhermore, we found an increase in the volume of suprapyramidal (>135%, 59%) and infrapyramidal (>128%, 36%) mossy fiber projection of granule neurons in the DG after treatment. We also found an increase in the volume of CA3 region (>146%, 33%) after treatment, suggesting that melatonin modulates the structural plasticity of the mossy fiber projection to establish functional synapses in the hippocampus. Together, the data suggest that, in addition to the previously reported effects of melatonin on the generation of new neurons and its antidepressant like effects, melatonin also modulates the structural plasticity of axons in granule cells in the DG.





2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.



2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
C Helmchen ◽  
J Klinkenstein ◽  
T Sander ◽  
J Gliemroth ◽  
B Machner ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document