A Single Dose of Rituximab Does Not Deplete B Cells in Secondary Lymphoid Organs but Alters Phenotype and Function

2013 ◽  
Vol 13 (6) ◽  
pp. 1503-1511 ◽  
Author(s):  
E. G. Kamburova ◽  
H. J. P. M. Koenen ◽  
K. J. E. Borgman ◽  
I. J. ten Berge ◽  
I. Joosten ◽  
...  
2013 ◽  
Vol 4 ◽  
Author(s):  
Kamburova Elena ◽  
Koenen Hans ◽  
Borgman Kyra ◽  
Ten Berge Ineke ◽  
Joosten Irma ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 935-935
Author(s):  
Yvonne A. Efebera ◽  
Tahamtan Ahmadi ◽  
Amanda Flies ◽  
David H. Sherr

Abstract Background: An increased understanding of the requirements for antigen presentation has encouraged development of cell-based cancer vaccines. Trials using dendritic cells (DC) as antigen presenting cells (APC) for immunotherapy of several malignancies have shown considerable success. However, the difficulty in generating large numbers of DC required for these immunizations has led to the search for alternative APC. One such candidate is the CD40 ligand (CD40L)-activated B cell, populations of which can readily be expanded in vitro. To be an effective vehicle for antigen presentation to T cells, CD40L-activated B cells must be capable of migrating to secondary lymphoid organs. Therefore, CD40L-activated B cell migration following subcutaneous or intravenous injection was evaluated. Methods: Splenic B cells from GFP transgenic mice were activated with CD40L + IL-4 and expanded in vitro prior to i.v. or s.c. injection of 3–4 x 107 into C57BL/6 mice. Recipient mice were sacrificed 2 hrs or 1–14 days thereafter and the percentage of GFP+/B220+ B cells quantified in spleens and lymph nodes by flow cytometry. Localization of these cells within lymphoid organs was determined by immunohistochemistry. In some experiments, activated C57BL/6 B cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) to evaluate cell growth in vivo. Results: Murine B cell populations were readily expanded by culture on CD40L-transfected L cells in the presence of IL-4. CD40L-activated B cells expressed high levels of CD80, CD86, and LFA-1 but decreased levels of L-selectin relative to naive cells. Following i.v. injection, activated B cells were detected in spleens and lymph nodes within 1 day. Peak concentrations of activated B cells were noted in spleens and lymph nodes on days 7 (4.8% of injected cells) and 10 (1.25% of injected cells) respectively, suggesting expansion of the activated B cell population in vivo. Naive B cells injected i.v. were detected within 1 day but their number declined precipitously thereafter. Following s.c. injection, peak levels of CD40L-activated B cells were noted on day 5 (spleens) and day 7 (lymph nodes). As determined by immunohistochemistry, both CD40L-activated and naïve B cells injected i.v. appeared in B cell regions of spleens and lymph nodes. While the kinetics of accumulation of CD40L-activated B cells injected s.c. or i.v. were similar, s.c. injected CD40L-activated B cells homed to the T cell regions of spleens and lymph nodes. CFSE experiments indicated that these activated B cells continue to grow in vivo. In contrast, naïve B cells injected s.c. only appeared in B cell regions. Conclusion: CD40L-activated B cell populations can readily be expanded in vitro, CD40L-activated B cells migrate to secondary lymphoid organs even when injected s.c., activated B cell populations expand in vivo, and s.c. injected, CD40L-activated B cells preferentially home to T cell regions of secondary lymphoid organs. These results suggest that this effective APC may serve as an important vehicle for delivery and presentation of exogenous (e.g. tumor) antigens to T cells in vivo.


2014 ◽  
Vol 211 (11) ◽  
pp. 2265-2279 ◽  
Author(s):  
Nicolas Fasnacht ◽  
Hsin-Ying Huang ◽  
Ute Koch ◽  
Stéphanie Favre ◽  
Floriane Auderset ◽  
...  

Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell–cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2–driven differentiation of marginal zone B cells and of Esam+ dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.


2020 ◽  
Author(s):  
Simon Zinkhan ◽  
Anete Ogrina ◽  
Ina Balke ◽  
Gunta Reseviča ◽  
Andris Zeltins ◽  
...  

AbstractVaccine-induced immune response can be greatly enhanced by mimicking pathogen properties. The size and the repetitive geometric shape of virus-like particles (VLPs) influence their immunogenicity by facilitating drainage to secondary lymphoid organs and enhancing interaction with and activation of B-cells and other innate humoral immune components. VLPs derived from the plant Bromovirus genus, specifically cowpea chlorotic mottle virus (CCMV), are T=3 icosahedron particles. They can be easily expressed in an E. coli host system and package ssRNA during the expression process. Recently, we have engineered CCMV-VLPs by incorporating the universal tetanus toxoid (TT) epitope at the N-terminus. The modified CCMVTT-VLPs successfully form icosahedral particles T=3, with a diameter of ∼30nm analogous to the parental VLPs. Interestingly, incorporating TT epitope at the C-terminus of CCMVTT-VLPs results in the formation of Rod-shaped VLPs, ∼1µm in length and ∼30nm in width. In this study, we have investigated the draining kinetics and immunogenicity of both engineered forms (termed as Round-shaped CCMVTT-VLPs and Rod-shaped CCMVTT-VLPs) as potential B cell immunogens using different in vitro and in vivo assays. Our results reveal that Round-shaped CCMVTT-VLPs are more efficient in draining to secondary lymphoid organs to charge antigen-presenting cells as well as B-cells. Furthermore, compared to Rod-shaped CCMVTT-VLPs, Round-shaped CCMVTT-VLPs led to more than 100-fold increased systemic IgG and IgA responses accompanied by prominent formation of splenic germinal centers. Round-shaped CCMVTT-VLPs could also polarize the induced immune response towards TH1. Up to our knowledge, this is the first study investigating and comparing the draining kinetics and immunogenicity of one and the same VLP monomer forming nano-sized icosahedrons or rods in the micrometer size.


2019 ◽  
Vol 6 (4) ◽  
pp. e563
Author(s):  
Rehana Z. Hussain ◽  
Petra D. Cravens ◽  
William A. Miller-Little ◽  
Richard Doelger ◽  
Valerie Granados ◽  
...  

ObjectiveThe goal of this study was to investigate the role of CD 19+ B cells within the brain and spinal cord during CNS autoimmunity in a peptide-induced, primarily T-cell–mediated experimental autoimmune encephalomyelitis (EAE) model of MS. We hypothesized that CD19+ B cells outside the CNS drive inflammation in EAE.MethodsWe generated CD19.Cre+/− α4-integrinfl/fl mice. EAE was induced by active immunization with myelin oligodendrocyte glycoprotein peptide (MOGp35-55). Multiparameter flow cytometry was used to phenotype leukocyte subsets in primary and secondary lymphoid organs and the CNS. Serum cytokine levels and Ig levels were assessed by bead array. B-cell adoptive transfer was used to determine the compartment-specific pathogenic role of antigen-specific and non–antigen-specific B cells.ResultsA genetic ablation of α4-integrin in CD19+/− B cells significantly reduced the number of CD19+ B cells in the CNS but does not affect EAE disease activity in active MOGp35-55-induced disease. The composition of B-cell subsets in the brain, primary lymphoid organs, and secondary lymphoid organs of CD19.Cre+/− α4-integrinfl/fl mice was unchanged during MOGp35-55-induced EAE. Adoptive transfer of purified CD19+ B cells from CD19.Cre+/− α4-integrinfl/fl mice or C57BL/6 wild-type (WT) control mice immunized with recombinant rMOG1-125 or ovalbumin323-339 into MOGp35-55-immunized CD19.Cre+/− α4-integrinfl/fl mice caused worse clinical EAE than was observed in MOGp35-55-immunized C57BL/6 WT control mice that did not receive adoptively transferred CD19+ B cells.ConclusionsObservations made in CD19.Cre+/− α4-integrinfl/fl mice in active MOGp35-55-induced EAE suggest a compartment-specific pathogenic role of CD19+ B cells mostly outside of the CNS that is not necessarily antigen specific.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2339-2345 ◽  
Author(s):  
Annaiah Cariappa ◽  
Catharine Chase ◽  
Haoyuan Liu ◽  
Paul Russell ◽  
Shiv Pillai

Abstract We have recently demonstrated that IgDhi B cells can occupy an extravascular perisinusoidal niche in the bone marrow in addition to the well-established follicular niche in conventional secondary lymphoid organs. The spleen has long been considered to be the site at which newly formed B lymphocytes mature into IgDhi naive recirculating B cells, but the existence of mutant mice that have selectively lost mature B cells in the bone marrow prompted an examination of B-cell maturation at this latter site. Following a single pulse of BrdU in intact mice, sequential labeling of more mature B-cell populations in the bone marrow suggested ongoing maturation at this site. Further evidence for B-cell maturation in the bone marrow was obtained from analyses of transitional B cells in splenectomized lymphotoxin α-deficient mice that lack all secondary lymphoid organs. In these mice, antibody-secreting cells recognizing multivalent antigens were also observed in the bone marrow following an intravenous microbial challenge. These data suggest that newly formed B cells mature into IgDhi B cells simultaneously in the spleen and the bone marrow and establish in a stringent manner that humoral immune responses can be initiated in situ in the bone marrow.


1987 ◽  
Vol 17 (9) ◽  
pp. 1311-1316 ◽  
Author(s):  
Jennifer E. Lortan ◽  
Carl A. Roobottom ◽  
Susan Oldfield ◽  
Ian C. M. MacLennan

1997 ◽  
Vol 185 (12) ◽  
pp. 2157-2170 ◽  
Author(s):  
Urs Karrer ◽  
Alana Althage ◽  
Bernhard Odermatt ◽  
Charles W.M. Roberts ◽  
Stanley J. Korsmeyer ◽  
...  

The role of the spleen and of other organized secondary lymphoid organs for the induction of protective antiviral immune responses was evaluated in orphan homeobox gene 11 knockout mice (Hox11−/−) lacking the spleen, and in homozygous alymphoplastic mutant mice (aly/aly) possessing a structurally altered spleen but lacking lymph nodes and Peyer's patches. Absence of the spleen had no major effects on the immune response, other than delaying the antibody response by 1–2 d. In aly/aly mice, the thymus-independent IgM response against vesicular stomatitis virus (VSV) was delayed and reduced, whereas the T-dependent switch to the protective IgG was absent. Therefore, aly/aly mice were highly susceptible to VSV infection. Since aly/aly spleen cells yielded neutralizing IgM and IgG after adoptive transfer into recipients with normally structured secondary lymphoid organs, these data suggest that the structural defect was mainly responsible for inefficient T–B cooperation. Although aly/aly mice generated detectable, but reduced, CTL responses after infection with vaccinia virus (VV) and lymphocytic choriomeningitis virus (LCMV), the elimination of these viruses was either delayed (VV) or virtually impossible (LCMV); irrespective of the dose or the route of infection, aly/aly mice developed life-long LCMV persistence. These results document the critical role of organized secondary lymphoid organs in the induction of naive T and B cells. These structures also provide the basis for cooperative interactions between antigen-presenting cells, T cells, and B cells, which are a prerequisite for recovery from primary virus infections via skin or via blood.


2018 ◽  
Vol 2018 ◽  
pp. 1-3 ◽  
Author(s):  
Trygve Holmøy ◽  
Øivind Torkildsen ◽  
Svetozar Zarnovicky

During treatment with fingolimod, B cells are redistributed from blood to secondary lymphoid organs, where they are protected from the effect of anti-CD20 and other cell-depleting therapies. We describe a multiple sclerosis patient who had almost complete depletion of B cells in blood during and shortly after treatment with fingolimod. He developed severe disease activity resembling immune reconstitution syndrome after switching from fingolimod to rituximab, with first dose being six weeks after fingolimod cessation. Following recommendations from the Swedish MS Association, rituximab treatment was started as one single dose of 1000 mg. In patients treated with fingolimod, pathogenic B cells may still be sequestered in secondary lymph nodes if this dose is given early. To deplete such B cells as they egress from the lymph nodes, we propose that a second dose of rituximab a few weeks after the first dose should be considered.


2021 ◽  
Vol 22 (7) ◽  
pp. 3465
Author(s):  
Janik Riese ◽  
Alina Gromann ◽  
Felix Lührs ◽  
Annabel Kleinwort ◽  
Tobias Schulze

Background: Gram-negative infections of the peritoneal cavity result in profound modifications of peritoneal B cell populations and induce the migration of peritoneal B cells to distant secondary lymphoid organs. However, mechanisms controlling the egress of peritoneal B cells from the peritoneal cavity and their subsequent trafficking remain incompletely understood. Sphingosine-1-phosphate (S1P)-mediated signaling controls migratory processes in numerous immune cells. The present work investigates the role of S1P-mediated signaling in peritoneal B cell trafficking under inflammatory conditions. Methods: Differential S1P receptor expression after peritoneal B cell activation was assessed semi‑quantitatively using RT-PCR in vitro. The functional implications of differential S1P1 and S1P4 expression were assessed by transwell migration in vitro, by adoptive peritoneal B cell transfer in a model of sterile lipopolysaccharide (LPS)‑induced peritonitis and in the polymicrobial colon ascendens stent peritonitis (CASP) model. Results: The two sphingosine-1-phosphate receptors (S1PRs) expressed in peritoneal B cell subsets S1P1 and S1P4 are differentially regulated upon stimulation with the TLR4 agonist LPS, but not upon PMA/ionomycin or B cell receptor (BCR) crosslinking. S1P4 deficiency affects both the trafficking of activated peritoneal B cells to secondary lymphoid organs and the positioning of these cells within the functional compartments of the targeted organ. S1P4 deficiency in LPS-activated peritoneal B cells results in significantly reduced numbers of splenic innate response activator B cells. Conclusions: The S1P-S1PR system is implicated in the trafficking of LPS-activated peritoneal B cells. Given the protective role of peritoneal B1a B cells in peritoneal sepsis, further experiments to investigate the impact of S1P4-mediated signaling on the severity and mortality of peritoneal sepsis are warranted.


Sign in / Sign up

Export Citation Format

Share Document