scholarly journals Comparative analysis of tests used to assess sperm chromatin integrity and DNA fragmentation

Andrologia ◽  
2020 ◽  
Author(s):  
Sulagna Dutta ◽  
Ralf Henkel ◽  
Ashok Agarwal
Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummarySperm DNA fragmentation is referred to as one of the main causes of male infertility. Failures in the protamination process, apoptosis and action of reactive oxygen species (ROS) are considered the most important causes of DNA fragmentation. Action of ROS or changes in sperm protamination would increase the susceptibility of sperm DNA to fragmentation. Routine semen analysis is unable to estimate sperm chromatin damage. Sperm DNA integrity influences sperm functional capability, therefore tests that measure sperm DNA fragmentation are important to assess fertility disorders. Actually, there is a considerable number of methods for assessing sperm DNA fragmentation and chromatin integrity, sperm chromatin stability assay (SCSA modified), sperm chromatin dispersion (SCD), comet assay, transferase dUTP nick end labelling (TUNEL); and protamine evaluation in sperm chromatin assay, such as toluidine blue, CMA3, protamine expression and evaluation of cysteine radicals. This review aims to describe the main causes of sperm DNA fragmentation and the tests commonly used to evaluate sperm DNA fragmentation.


2016 ◽  
Vol 8 (33) ◽  
pp. 6260-6264 ◽  
Author(s):  
Reza Nosrati ◽  
Max M. Gong ◽  
Maria C. San Gabriel ◽  
Armand Zini ◽  
David Sinton

A comprehensive paper-based assay for sperm chromatin integrity analysis has been demonstrated that quantifies both DNA fragmentation and packaging.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Shikai Wang ◽  
Weihong Tan ◽  
Yueyue Huang ◽  
Xianbao Mao ◽  
Zhengda Li ◽  
...  

Summary To determine the effects of sperm DNA fragmentation (SDF) on embryo morphokinetic parameters, cleavage patterns and embryo quality, this retrospective study analyzed 151 intracytoplasmic sperm injection (ICSI) cycles (1152 embryos collected) between November 2016 and June 2019. SDF was assessed using sperm chromatin dispersion. The cycles were divided into two groups based on the SDF rate: SDF < 15% (n = 114) and SDF ≥ 15% (n = 37). The embryo morphokinetic parameters, cleavage patterns, and embryo quality were compared between the two groups. The morphokinetic parameters tPNf, t2, t3, t4, t5, t6, and t8 were achieved significantly earlier in the SDF < 15% group compared with in the SDF ≥ 15% group. The fertilization and 2PN rates seemed to be significantly higher in the SDF < 15% group compared with in the SDF ≥ 15% group, while the abnormal cleavage rates were similar. However, a significantly higher rate of chaotic cleavage (CC) was observed in the SDF ≥ 15% group. The D3 high-quality embryo and available embryo rates were similar between the two groups. The blastocyst formation, high-quality blastocyst, and available blastocyst rates in the SDF < 15% group were significantly higher than those in the SDF ≥ 15% group. With an increase in SDF level, the chemical pregnancy, clinical pregnancy and implantation rates tended to decrease, while the miscarriage rate increased. This study demonstrated that SDF ≥ 15% reduces the fertilization rate of ICSI cycles and affects certain morphokinetic parameters. A higher SDF level can also induce a higher rate of CC, with subsequent decreases in the blastocyst formation rate and blastocyst quality.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 83-84
Author(s):  
Marina Fortes ◽  
Wei Liang Andre Tan ◽  
Laercio R Porto-Neto ◽  
Antonio Reverter ◽  
Gry B Boe-Hansen

Abstract Traits such as sperm morphology and motility are routine in veterinarian evaluations of bull fertility. However, they rarely are included in livestock breeding programs, which typically use only scrotal circumference (SC) and some female traits for fertility selection. We studied 25 male fertility traits measured in two research populations of bulls (1,099 Brahman, and 1,719 Tropical Composite) and one commercial population (2,490 Santa Gertrude bulls). Measurements included standard semen evaluation (e.g. sperm motility and morphology) and SC. In the research data, we also measured sperm DNA fragmentation and sperm protamine deficiency for about 50% of the bulls. Using a mixture of genomic and pedigree analyses, we estimated heritabilities and genetic correlations for all traits, in each population. Our analyses suggest that bull fertility traits have a heritable component, which makes selective breeding possible. The phenotype variation in sperm DNA fragmentation and sperm protamine deficiency traits also have a heritable component (h2 ~ 0.05–0.22). These first estimates for heritability of sperm chromatin phenotypes require further studies, with larger datasets, to corroborate present results. In all three populations, we observed genetic correlations across traits that were favorable, but not high. For example, the percentage of normal sperm (PNS) from the sperm morphology evaluation was positively correlated with SC. In the research data, sperm DNA fragmentation was negatively correlated with PNS (r2 ~ 0.23–0.33), meaning that bulls with a higher PNS had less DNA fragmentation, being therefore more fertile according to both indicators. Given the favorable and yet not high genetic correlations between traits, it is possible to envision that sperm chromatin phenotypes might form a panel, together with PNS and SC, for a comprehensive bull fertility index. Selection indices that include fertility traits are being implemented in the dairy industry and could be recommended for beef cattle, too. An index that benefits from the favorable genetic correlations between traits that describe different aspects of bull fertility is a sensible approach to selective breeding. The clinical use of complementary indicators for male fertility is largely accepted, when deciding on bull fitness for the mating season. We propose extending this rationale to create a multi-trait index that captures genetic merit for bull fertility. In addition, we performed genome-wide association analyses in the research data and identified eight QTLs in the X chromosome. Correlations and shared SNP associations support the hypothesis that these phenotypes have the same underlying cause: abnormal spermatogenesis. In conclusion, it is possible to improve bull fertility through selective breeding, by measuring complementary fertility traits. Genomic selection for bull fertility might be more accurate if the X chromosome mutations that underlie the discovered QTL are included in the analyses. Polymorphisms associated with fertility in the bull accumulate in the X chromosome, as they do in humans and mice, thus suggesting specialization of this chromosome.


2017 ◽  
Vol 29 (3) ◽  
pp. 630 ◽  
Author(s):  
S. D. Johnston ◽  
C. López-Fernández ◽  
F. Arroyo ◽  
J. L. Fernández ◽  
J. Gosálvez

Herein we report a method of assessing DNA fragmentation in the saltwater crocodile using the sperm chromatin dispersion test (SCDt) after including frozen–thawed spermatozoa in a microgel (Halomax; Halotech DNA, Madrid, Spain). Following controlled protein depletion, which included a reducing agent, sperm nuclei with fragmented DNA showed a homogeneous and larger halo of chromatin dispersion with a corresponding reduced nucleoid core compared with sperm with non-fragmented DNA. The presence of DNA damage was confirmed directly by incorporation of modified nucleotides using in situ nick translation (ISNT) and indirectly by studying the correlation of the SCDt with the results of DNA damage visualisation using a two-tailed comet assay (r = 0.90; P = 0.037). Results of the SCDt immediately following thawing and after 5 h incubation at 37°C in order to induce a range of DNA damage revealed individual crocodile differences in both the baseline level of DNA damage and DNA longevity.


Author(s):  
Stephanie Cheung ◽  
Alessandra Parrella ◽  
Danielle Tavares ◽  
Derek Keating ◽  
Philip Xie ◽  
...  

Abstract Purpose To characterize, by specific biomarkers and nucleic acid sequencing, the structural and genomic sperm characteristics of partial (PG) and complete globozoospermic (CG) men in order to identify the best reproductive treatment. Methods We assessed spermatozoa from 14 consenting men ultrastructurally, as well as for histone content, sperm chromatin integrity, and sperm aneuploidy. Additional genomic, transcriptomic, and proteomic evaluations were carried out to further characterize the CG cohort. The presence of oocyte-activating sperm cytosolic factor (OASCF) was measured by a phospholipase C zeta (PLCζ) immunofluorescence assay. Couples were treated in subsequent cycles either by conventional ICSI or by ICSI with assisted gamete treatment (AGT) using calcium ionophore (Ionomycin, 19657, Sigma-Aldrich, Saint Louis, MO, USA). Results Ultrastructural assessment confirmed complete acrosome deficiency in all spermatozoa from CG men. Histone content, sperm chromatin integrity, and sperm aneuploidy did not differ significantly between the PG (n = 4) and CG (n = 10) cohorts. PLCζ assessment indicated a positive presence of OASCF in 4 PG couples, who underwent subsequent ICSI cycles that yielded a 36.1% (43/119) fertilization with a 50% (2/4) clinical pregnancy and delivery rate. PLCζ assessment failed to detect OASCF for 8 CG patients who underwent 9 subsequent ICSI cycles with AGT, yielding a remarkable improvement of fertilization (39/97; 40.2%) (P = 0.00001). Embryo implantation (6/21; 28.6%) and clinical pregnancies (5/7; 71.4%) were also enhanced, resulting in 4 deliveries. Gene mutations (DPY19L2, SPATA16, PICK1) were identified in spermatozoa from CG patients. Additionally, CG patients unable to sustain a term pregnancy had gene mutations involved in zygote development (NLRP5) and postnatal development (BSX). CG patients who successfully sustained a pregnancy had a mutation (PIWIL1) related to sperm phenotype. PLCZ1 was both mutated and underexpressed in these CG patients, regardless of reproductive outcome. Conclusions Sperm bioassays and genomic studies can be used to characterize this gamete’s capacity to support embryonic development and to tailor treatments maximizing reproductive outcome.


Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Isabelle Oger ◽  
Christelle Da Cruz ◽  
Gilles Panteix ◽  
Yves Menezo

In our work, we have used 8-hydroxy-deoxyguanosine (8-OH-dG), one of the major oxidative products of sperm DNA, in a population of patients consulting for infertility. We found an inverse relationship between sperm concentration and the log of the ratio of 8-OH-dG to dG (P<0.01). On the same patients' sperm samples, the sperm chromatin structure assay (SCSA) was performed. An inverse relationship was observed between the DNA fragmentation index and sperm concentration (P<0.001). There was also a positive relationship between SCSA and log 8-OH-dG/dG. This indicates that DNA fragmentation measured by the SCSA originates in part from oxidative products. In a few patients, antioxidant treatment decreased the DNA fragmentation index below the threshold of 30% that is crucial for subfertility.


Sign in / Sign up

Export Citation Format

Share Document