Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis

2021 ◽  
Author(s):  
Xiaoyong Xie ◽  
Guoling Ye ◽  
Yuyuan Bao ◽  
Ziwei Ying ◽  
Mujiao Xie ◽  
...  
2020 ◽  
Author(s):  
Lei Wang ◽  
Louis Riel ◽  
Bekim Bajrami ◽  
Bin Deng ◽  
Amy Howell ◽  
...  

The novel use of the α-methylene-β-lactone (MeLac) moiety as a warhead of multiple electrophilic sites is reported. In this study, we demonstrate that a MeLac-alkyne is a competent covalent probe and reacts with diverse proteins in live cells. Proteomics analysis of affinity-enriched samples identifies probe-reacted proteins, resolves their modified peptides/residues, and thus characterizes probe-protein reactions. Unique methods are developed to evaluate confidence in the identification of the reacted proteins and modified peptides. Tandem mass spectra of the peptides reveal that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael addition or acyl addition. A peptide-centric proteomics platform, using MeLac-alkyne as the measurement probe, successfully analyzes the Orlistat selectivity in live HT-29 cells. MeLac is a versatile warhead demonstrating enormous potential to expedite the development of covalent probes and inhibitors in interrogating protein (re)activity. MeLac-empowered platforms in chemical proteomics are widely adaptable for measuring the live-cell action of reactive molecules.


2019 ◽  
Author(s):  
Maha Al-Mozaini ◽  
Ibtihag S. Alsharif ◽  
Al-Hussain J. Alzahrani ◽  
Zakia Shinwari ◽  
Magid Halim ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 979-988
Author(s):  
Kyu-Yeon Han ◽  
Jin-Hong Chang ◽  
Dimitri T. Azar

Background: Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. Objective: The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. Methods: Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. Results: Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. Conclusion: Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. Results Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.131, R2 = 0.261). Conclusions Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


Author(s):  
Maha Al-Mozaini ◽  
Ibtihag Alsharif ◽  
Alhusain Alzahrani ◽  
Zakia Shinwari ◽  
Magid Halim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document