Lysine supplemented to poultry by‐product meal replacement diet modulates body growth, metabolism and related gene expressions of hybrid sturgeon ( Acipenser schrenckii ♀ × Acipenser baerii ♂ )

2021 ◽  
Author(s):  
Wenqiang Wang ◽  
Peng Yang ◽  
Chaoqun He ◽  
Yawen Qin ◽  
Kangsen Mai ◽  
...  
2011 ◽  
Vol 107 (8) ◽  
pp. 1112-1118 ◽  
Author(s):  
Pei-Hsuan Tsai ◽  
Jun-Jen Liu ◽  
Chui-Li Yeh ◽  
Wan-Chun Chiu ◽  
Sung-Ling Yeh

There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25 % of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhiqiang Xu ◽  
Yuqi He ◽  
Xiufeng Zeng ◽  
Xiuxia Zeng ◽  
Junhui Huang ◽  
...  

Successful dental implants rely on stable osseointegration and soft-tissue integration. Titania nanotubes (TNTs) with a diameter of 100 nm could increase the mesenchymal stem cell response and simultaneously decrease Staphylococcus aureus adhesion. However, the interactions between the modified surface and surrounding soft tissues are still unknown. In the present study, we fully investigated the biological behavior of human gingival fibroblasts (HGFs) and the adhesion of Porphyromonas gingivalis (P. gingivalis). TNTs were synthesized on titanium (Ti) surfaces by electrochemical anodization at 10, 30, and 60 V, and the products were denoted as NT10, NT30, and NT60, respectively. NT10 (diameter: 30 nm) and NT30 (diameter: 100 nm) could enhance the HGF functions, such as cell attachment and proliferation and extracellular matrix- (ECM-) related gene expressions, with the latter showing higher enhancement. NT60 (diameter: 200 nm) clearly impaired cell adhesion and proliferation and ECM-related gene expressions. Bacterial adhesion on the TNTs decreased and reached the lowest value on NT30. Therefore, NT30 without pharmaceuticals can be used to substantially enhance the HGF response and reduce P. gingivalis adhesion to the utmost, thus demonstrating significant potential in the transgingival part of dental implants.


Author(s):  
Wan-Jiung(Wan-Chung) Hu ◽  
Yu-Ting Yen ◽  
Sher Singh ◽  
Chuan-Liang Kao ◽  
Betty A. Wu-Hsieh

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Swee Keong Yeap ◽  
Boon Kee Beh ◽  
Wan Yong Ho ◽  
Hamidah Mohd Yusof ◽  
Nurul Elyani Mohamad ◽  
...  

Legumes have previously been reported with hypolipidemic effect caused by the presence of flavonoid. This study was carried out to evaluate the antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Blood from all mice was collected and subjected to serum lipid and liver profiles biochemical analysis and quantitative RT-PCR for atherosclerosis related gene expressions. Besides, livers were collected for antioxidant assays and histopathology evaluation. Fermented mung bean was found to reduce the level of serum lipid and liver enzyme profiles of hypercholesterolemic mice. Furthermore, liver antioxidant and nitric oxide levels were also significantly restored by fermented mung bean in a dosage dependent manner. The gene expression study indicated thatApoeandBcl2a1awere upregulated whileNpyandVwfexpressions were downregulated after the treatment. The effects of fermented mung bean were greater than nonfermented mung bean. These results indicated that fermented mung bean possessed antioxidants that lead to its hypolipidemic effect on hypercholesterolemic mice.


Sign in / Sign up

Export Citation Format

Share Document