Can we adjust a marine cyclopoid copepod to freshwater?—First step towards a ‘universal’ live feed product for fish and shrimp larvae

2021 ◽  
Author(s):  
Benni Winding Hansen ◽  
Giorgia Ciappini ◽  
Anders Malmendal ◽  
Thomas Allan Rayner
Keyword(s):  

Aquaculture ◽  
2021 ◽  
Vol 533 ◽  
pp. 736125
Author(s):  
Per M. Jepsen ◽  
Hans van Someren Gréve ◽  
Katrine N. Jørgensen ◽  
Kristine G.W. Kjær ◽  
Benni W. Hansen


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rahimeh Rahmati ◽  
Abolghasem Esmaeili Fereidouni ◽  
Naser Agh ◽  
Mastooreh Doustdar


2017 ◽  
Vol 48 (8) ◽  
pp. 4461-4469 ◽  
Author(s):  
Jason S Broach ◽  
Eric J Cassiano ◽  
Craig A Watson


2021 ◽  
Vol 97 ◽  
pp. 102865
Author(s):  
Wencai Dai ◽  
Stine Slotsbo ◽  
Martin Holmstrup
Keyword(s):  


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 420
Author(s):  
Roma Durak ◽  
Malgorzata Jedryczka ◽  
Beata Czajka ◽  
Jan Dampc ◽  
Katarzyna Wielgusz ◽  
...  

The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 °C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 °C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL−1, 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 °C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), β-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest.



2021 ◽  
Vol 105 (5) ◽  
pp. 2139-2156
Author(s):  
Justine Sauvage ◽  
Gary H. Wikfors ◽  
Xiaoxu Li ◽  
Mark Gluis ◽  
Nancy Nevejan ◽  
...  

Abstract The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. Key points • Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. • Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. • Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications.



Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 190
Author(s):  
Fawzy I. Magouz ◽  
Mohamed A. Essa ◽  
Mustafa Matter ◽  
Abdallah Tageldein Mansour ◽  
Ahmed Gaber ◽  
...  

Copepods are one of the most abundant and diverse live food sources for mesopelagic and bathypelagic fishes and crustaceans. They could contribute to the overlap of the transition period from live feed to an artificial weaning diet in marine larvae production. However, the culture conditions still need optimization to provide sufficient production to cover the increasing demand for marine hatcheries. Therefore, the present study investigated the effects of different salinity levels (5, 10, 15, 20, 25, and 30 ppt) on the population growth, growth rate, and population composition (males, females, copepodite, and nauplii ratio) of the marine copepod, Oithona nana. The experiment continued for 15 days, under laboratory-controlled conditions of temperature (27 ± 1 °C), pH (7.7 ± 0.15), and continuous gentle aeration in 30 L glass aquaria. The copepod culture aquaria were supplemented with a mixture of soybean and yeast (0.5 g 10−6 individual−1 24-h−1) as a feed source. The highest significant population growth and population growth rate of O. nana were achieved with a salinity level of 20 ppt. Regarding population composition, O. nana cultured at the salinity level of 20 ppt recorded the highest significant percentages of copepodite and nauplii. The results concluded that copepod, O. nana, is capable of withstanding abrupt changes in the salinity, but there are limits to their tolerance, with an optimal salinity level of 20 ppt. This salinity level achieved the highest population growth and the highest percentages of copepodite and nauplii of marine Copepoda, O. nana.



2012 ◽  
Vol 78 (8) ◽  
pp. 2841-2849 ◽  
Author(s):  
Evan F. Goulden ◽  
Michael R. Hall ◽  
David G. Bourne ◽  
Lily L. Pereg ◽  
Lone Høj

ABSTRACTThe type strain ofVibrio owensii(DY05) was isolated during an epizootic of aquaculture-reared larvae (phyllosomas) of the ornate spiny lobster (Panulirus ornatus).V. owensiiDY05 was formally demonstrated to be the etiological agent of a disease causing rapid and reproducible larval mortality with pathologies similar to those seen during disease epizootics. Vectored challenge via the aquaculture live feed organismArtemia(brine shrimp) caused consistent cumulative mortality rates of 84 to 89% after 72 h, in contrast to variable mortality rates seen after immersion challenge. Histopathological examination of vector-challenged phyllosomas revealed bacterial proliferation in the midgut gland (hepatopancreas) concomitant with epithelial cell necrosis. A fluorescent-protein-labeledV. owensiiDY05 transconjugant showed dispersal of single cells in the foregut and hepatopancreas 6 h postexposure, leading to colonization of the entire hepatopancreas within 18 h and eventually systemic infection.V. owensiiDY05 is a marine enteropathogen highly virulent toP. ornatusphyllosoma that uses vector-mediated transmission and release from host association to a planktonic existence to perpetuate transfer. This understanding of the infection process will improve targeted biocontrol strategies and enhance the prospects of commercially viable larviculture for this valuable spiny lobster species.



2016 ◽  
Author(s):  
Regina Melianawati ◽  
Rarastoeti Pratiwi ◽  
Nyoman Puniawati ◽  
Pudji Astuti


2021 ◽  
Vol 26 (3) ◽  
pp. 197-206
Author(s):  
Mostafa Imhmed Ighwerb ◽  
Johannes Hutabarat ◽  
Ervia Yudiati ◽  
Rudhi Pribadi

The water quality found on the surface is usually better than that accumulated at the seabed and more bottomless sea. When recycled, water usually brings many materials along the path, all the way to reaching its end. Water quality varies from place to place, season, and different types of rock and soil it passes through also influences the possessed quality. By employing Penaeus merguiensis larvae produced by the Marine Research Center Hatchery owned by Jepara's government, this study analyzes varying effects in three nominal salinities (28, 32, and 36 ppt) and types of diets (Diet A: 100% live feed; Diet B: 100% FRIPPAK; Diet C: a combination of Diet A and Diet C, 50 % each) and finds the optimum water quality parameters such as dissolved oxygen, pH, and temperature on the growth of the newly introduced Penaeus merguiensis larvae. The results show that two nominals of water salinities (28 and 32 ppt) with Diet A works well, supporting the growth from most Zoea to Postlarvae-1: Zoea-1 at 28 ppt with Diet A; Zoea-2 at 32 ppt with Diet A; Zoea-3 at 32 ppt with Diet A; Mysis-1 at 28 ppt with Diet A; Mysis-2 at 28 ppt with Diet C; Mysis-3 at 28 ppt with Diet A; Postlarva-1 at 28 ppt with Diet A. All shrimp prefers temperature ranging from 31-32.4 °C with dissolved oxygen of 4.9-5.74 ppm and pH 7.0-8.1. 



Sign in / Sign up

Export Citation Format

Share Document