scholarly journals Global variation in freshwater physico‐chemistry and its influence on chemical toxicity in aquatic wildlife

2021 ◽  
Author(s):  
João Paulo S. Pinheiro ◽  
Fredric M. Windsor ◽  
Rod W. Wilson ◽  
Charles R. Tyler
2019 ◽  
Vol 38 (4) ◽  
pp. 251-264 ◽  
Author(s):  
Jason M. Koontz ◽  
Blair C. R. Dancy ◽  
Cassandra L. Horton ◽  
Jonathan D. Stallings ◽  
Valerie T. DiVito ◽  
...  

There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Durai Ganesh ◽  
G. Senthilkumar ◽  
P. Eswaran ◽  
M. Balakrishnan ◽  
S. N. Bramha ◽  
...  

AbstractUranium concentration in the ground water samples from the district of Tiruvannamalai, Tamil Nadu, was measured using an LED fluorimeter. All the samples were qualified as potable water from the radiological perspective. Though some samples showed mild chemical toxicity, they are still safe for ingestion. Different risk coefficients were calculated, and they were compared with recommended safety limits specified by various agencies. Software tools such as QGIS 15, GraphPad Prism 8 and Surfer 15 were employed for developing maps and plots.


2021 ◽  
pp. 104973
Author(s):  
L. Ponoop Prasad Patro ◽  
Chakkarai Sathyaseelan ◽  
Patil Pranita Uttamrao ◽  
Thenmalarchelvi Rathinavelan
Keyword(s):  

Author(s):  
Kgomotso Lebelo ◽  
Ntsoaki Malebo ◽  
Mokgaotsa Jonas Mochane ◽  
Muthoni Masinde

Historically, chemicals exceeding maximum allowable exposure levels have been disastrous to underdeveloped countries. The global food industry is primarily affected by toxic chemical substances because of natural and anthropogenic factors. Food safety is therefore threatened due to contamination by chemicals throughout the various stages of food production. Persistent Organic Pollutants (POPs) in the form of pesticides and other chemical substances such as Polychlorinated Biphenyls (PCBs) have a widely documented negative impact due to their long-lasting effect on the environment. This present review focuses on the chemical contamination pathways along the various stages of food production until the food reaches the consumer. The contamination of food can stem from various sources such as the agricultural sector and pollution from industrialized regions through the air, water, and soil. Therefore, it is imperative to control the application of chemicals during food packaging, the application of pesticides, and antibiotics in the food industry to prevent undesired residues on foodstuffs. Ultimately, the protection of consumers from food-related chemical toxicity depends on stringent efforts from regulatory authorities both in developed and underdeveloped nations.


Author(s):  
Tamara Mainetti ◽  
Marilena Palmisano ◽  
Fabio Rezzonico ◽  
Blaž Stres ◽  
Susanne Kern ◽  
...  

AbstractConjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S.


Sign in / Sign up

Export Citation Format

Share Document