scholarly journals Extracellular ATP promotes breast cancer invasion and epithelial‐mesenchymal transition via hypoxia‐inducible factor 2α signaling

2019 ◽  
Vol 110 (8) ◽  
pp. 2456-2470 ◽  
Author(s):  
Hui Yang ◽  
Yue‐Hang Geng ◽  
Peng Wang ◽  
Yan‐Ting Zhou ◽  
Han Yang ◽  
...  
Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769168 ◽  
Author(s):  
Min Zhao ◽  
Lin Ang ◽  
Jin Huang ◽  
Jin Wang

MicroRNAs are small RNA molecules that play a major role in the post-transcriptional regulation of genes and influence the development, differentiation, proliferation, and apoptosis of cells and the development and progression of tumors. The epithelial–mesenchymal transition is a process by which epithelial cells morphologically transform into cells with a mesenchymal phenotype. The epithelial–mesenchymal transition plays a highly important role in tumor invasion and metastasis. Increasing evidence indicates that microRNAs are tightly associated with epithelial–mesenchymal transition regulation in tumor cells. In breast cancer, various microRNA molecules have been identified as epithelial–mesenchymal transition inducers or inhibitors, which, through different mechanisms and signaling pathways, participate in the regulation of breast cancer invasion and metastasis among various biological behaviors. The epithelial–mesenchymal transition–related microRNAs in breast cancer provide valuable molecules for researching cell invasion and metastasis, and they also provide candidate targets that may be significant for the targeted therapy of breast cancer.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Ching-Wen Lin ◽  
Lu-Kai Wang ◽  
Shu-Ping Wang ◽  
Yih-Leong Chang ◽  
Yi-Ying Wu ◽  
...  

Abstract Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in turn, stimulates E-cadherin and occludin expression and suppresses Slug-mediated epithelial–mesenchymal transition (EMT) and cell invasiveness. Under hypoxic conditions, stabilized hypoxia-inducible factor (HIF)-1α downregulates Daxx expression and promotes cancer invasion, whereas re-expression of Daxx represses hypoxia-induced cancer invasion. Daxx also suppresses Slug-mediated lung cancer metastasis in an orthotopic lung metastasis mouse model. Using clinical tumour samples, we confirmed that the HIF-1α/Daxx/Slug pathway is an outcome predictor. Our results support that Daxx can act as a repressor in controlling HIF-1α/HDAC1/Slug-mediated cancer cell invasion and is a potential therapeutic target for inhibition of cancer metastasis.


Oncogene ◽  
2020 ◽  
Vol 39 (35) ◽  
pp. 5795-5810 ◽  
Author(s):  
Hui Yang ◽  
Yue-Hang Geng ◽  
Peng Wang ◽  
Han Yang ◽  
Yan-Ting Zhou ◽  
...  

2019 ◽  
Vol 374 (1779) ◽  
pp. 20180231 ◽  
Author(s):  
Yair Elisha ◽  
Yael Sagi ◽  
Georg Klein ◽  
Ravid Straussman ◽  
Benjamin Geiger

The cross-talk between cancer cells and the stromal microenvironment plays a key role in regulating cancer invasion. Here, we employed an ex vivo invasion model system for exploring the regulation of breast cancer cells infiltration into a variety of stromal fibroblast monolayers. Our results revealed considerable variability in the stromal induction of invasiveness, with some lines promoting and others blocking invasion. It was shown that conditioned medium (CM), derived from invasion-promoting fibroblasts, can induce epithelial–mesenchymal transition-like process in the cancer cells, and trigger their infiltration into a monolayer of invasion-blocking fibroblasts. To identify the specific invasion-promoting molecules, we analysed the cytokines in stimulatory CM, screened a library of purified cytokines for invasion-promoting activity and tested the effect of specific inhibitors of selected cytokine receptors on the CM-induced invasion. Taken together, these experiments indicated that the invasiveness of BT-474 is induced by the combined action of IL1 and IL6 and that IL1 can induce IL6 secretion by invasion-blocking fibroblasts, thereby triggering cancer cell invasion into the stroma. This unexpected observation suggests that stromal regulation of cancer invasion may involve not only cross-talk between stromal and cancer cells, but also cooperation between different stromal subpopulations. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.


2019 ◽  
Author(s):  
Andrew Redfern ◽  
Veenoo Agarwal ◽  
Lisa Spalding ◽  
Tony Blick ◽  
Alexander Dobrovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document