Microbiota Associations with Inflammatory Pathways in Asthma

Author(s):  
Juan Wang ◽  
Jianmin Chai ◽  
Linlin Zhang ◽  
Lijiao Zhang ◽  
Wei Yan ◽  
...  
2019 ◽  
Vol 26 (5) ◽  
pp. 837-854 ◽  
Author(s):  
Effimia Zacharia ◽  
Nikolaos Papageorgiou ◽  
Adam Ioannou ◽  
Gerasimos Siasos ◽  
Spyridon Papaioannou ◽  
...  

During the last few years, a significant number of studies have attempted to clarify the underlying mechanisms that lead to the presentation of atrial fibrillation (AF). Inflammation is a key component of the pathophysiological processes that lead to the development of AF; the amplification of inflammatory pathways triggers AF, and, in tandem, AF increases the inflammatory state. Indeed, the plasma levels of several inflammatory biomarkers are elevated in patients with AF. In addition, the levels of specific inflammatory biomarkers may provide information regarding to the AF duration. Several small studies have assessed the role of anti-inflammatory treatment in atrial fibrillation but the results have been contradictory. Large-scale studies are needed to evaluate the role of inflammation in AF and whether anti-inflammatory medications should be routinely administered to patients with AF.


2020 ◽  
Vol 26 (34) ◽  
pp. 4234-4245
Author(s):  
Deepaneeta Sarmah ◽  
Aishika Datta ◽  
Swapnil Raut ◽  
Ankan Sarkar ◽  
Birva Shah ◽  
...  

Inflammation is a devastating outcome of cerebrovascular diseases (CVD), namely stroke and atherosclerosis. Numerous studies over the decade have shown that inflammasomes play a role in mediating inflammatory reactions post cellular injury occurring after a stroke or a rupture of an atherosclerotic plaque. In view of this, targeting these inflammatory pathways using different pharmacological therapies may improve outcomes in patients with CVD. Here, we review the mechanisms by which inflammasomes drive the pathogenesis of stroke and atherosclerosis. Also, discussed here are the possible treatment strategies available for inhibiting inflammasomes or their up-stream/down-stream mediators.


2021 ◽  
Vol 185 ◽  
pp. 114433
Author(s):  
Eva Florensa-Zanuy ◽  
Emilio Garro-Martínez ◽  
Albert Adell ◽  
Elena Castro ◽  
Álvaro Díaz ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1452
Author(s):  
Kypros Dereschuk ◽  
Lauren Apostol ◽  
Ishan Ranjan ◽  
Jaideep Chakladar ◽  
Wei Tse Li ◽  
...  

The implications of the microbiome on Coronavirus disease 2019 (COVID-19) prognosis has not been thoroughly studied. In this study we aimed to characterize the lung and blood microbiome and their implication on COVID-19 prognosis through analysis of peripheral blood mononuclear cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage fluid (BALF) samples. In all three tissue types, we found panels of microbes differentially abundant between COVID-19 and normal samples correlated to immune dysregulation and upregulation of inflammatory pathways, including key cytokine pathways such as interleukin (IL)-2, 3, 5-10 and 23 signaling pathways and downregulation of anti-inflammatory pathways including IL-4 signaling. In the PBMC samples, six microbes were correlated with worse COVID-19 severity, and one microbe was correlated with improved COVID-19 severity. Collectively, our findings contribute to the understanding of the human microbiome and suggest interplay between our identified microbes and key inflammatory pathways which may be leveraged in the development of immune therapies for treating COVID-19 patients.


2021 ◽  
Vol 10 (9) ◽  
pp. 1880
Author(s):  
Paola Galozzi ◽  
Sara Bindoli ◽  
Andrea Doria ◽  
Francesca Oliviero ◽  
Paolo Sfriso

In the panorama of inflammatory arthritis, gout is the most common and studied disease. It is known that hyperuricemia and monosodium urate (MSU) crystal-induced inflammation provoke crystal deposits in joints. However, since hyperuricemia alone is not sufficient to develop gout, molecular-genetic contributions are necessary to better clinically frame the disease. Herein, we review the autoinflammatory features of gout, from clinical challenges and differential diagnosis, to the autoinflammatory mechanisms, providing also emerging therapeutic options available for targeting the main inflammatory pathways involved in gout pathogenesis. This has important implication as treating the autoinflammatory aspects and not only the dysmetabolic side of gout may provide an effective and safer alternative for patients even in the prevention of possible gouty attacks.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


Sign in / Sign up

Export Citation Format

Share Document