scholarly journals Cell surface changes in theCandida albicansmitochondrial mutantgoa1Δ are associated with reduced recognition by innate immune cells

2013 ◽  
Vol 15 (9) ◽  
pp. 1572-1584 ◽  
Author(s):  
Xiaodong She ◽  
Lulu Zhang ◽  
Hui Chen ◽  
Richard Calderone ◽  
Dongmei Li
mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyla S. Ost ◽  
Shannon K. Esher ◽  
Chrissy M. Leopold Wager ◽  
Louise Walker ◽  
Jeanette Wagener ◽  
...  

ABSTRACT Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101 Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101 Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101 Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101 Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101 Δ mutant in vivo , documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. IMPORTANCE Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to mask immunogenic epitopes. We have created a fungal strain with a targeted mutation in a pH response pathway that is unable to properly organize its cell wall, resulting in a dramatic immune reaction during infection. This mutant cell wall is defective in hiding important cell wall components, such as the chito-oligomers chitin and chitosan. By creating a series of cell wall mutants, we demonstrated that the degree of chito-oligomer exposure correlates with the intensity of innate immune cell activation. This activation requires a combination of host receptors to recognize and respond to these infecting microorganisms. Therefore, these experiments explored host-pathogen interactions that determine the degree of the subsequent inflammatory response and the likely outcome of infection.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 996-996
Author(s):  
Xiufen Chen ◽  
Dominick Fosco ◽  
Douglas E. Kline ◽  
Justin Kline

Abstract Pre-apoptotic cancer cells release internalized calreticulin (CRT) to their surface prior to death, which acts as an ‘eat-me’ signal to local phagocytes. Chemotherapy and irradiation, which can induce immunogenic cell death through CRT translocation, can also result in local and/or systemic immune suppression in the host. To bypass the requirement of exposing the host to chemotherapy to induce translocation of CRT to the cell surface, murine acute myeloid leukemia (AML) cells (C1498), were engineered to constitutively express cell surface CRT (C1498.CRT). Vector control C1498 or C1498.CRT cells were inoculated intravenously (IV) into C57BL/6 mice. Significantly prolonged survival was observed in hosts harboring C1498.CRT versus vector control C1498 cells systemically. The survival benefit were abrogated in both Rag2-/- hosts or by depletion of T cells with anti-CD4 plus anti-CD8 antibodies, arguing that the immune-mediated effect of cell-surface CRT expression is dependent upon a functional adaptive immune system. More strikingly, systemic inoculation with C1498.CRT cells expressing the model SIYRYYGL (SIY) peptide antigen (C1498.SIY.CRT cells) resulted in almost complete protection from AML development (>90% long term survival vs. 10% of C1498.SIY vector control cells). All animals surviving a primary C1498.SIY.CRT challenge rejected a subsequent re-challenge with C1498.SIY cells, suggesting that CRT-expressing AML cells promote immunologic memory. Significantly enhanced expansion and unregulated IFNγ production were observed among SIY-specific T cell receptor transgenic CD8+ 2C T cells following their adoptive transfer into hosts bearing C1498.SIY.CRT AML cells versus vector control C1498.SIY cells. Interestingly, CRT expression on AML cells did not promote their in vivo phagocytosis by innate immune cells, specifically splenic CD8a+ dendritic cells known to engulf AML cells following their IV inoculation. IL-12 production by CD8α+CD11c+ dendritic cells which had engulfed C1498 and C1498.CRT cells in vivo was similarly induced, and cross-presentation of the SIY antigen to 2C T cells ex vivo by purified CD8a+DCs following in vivo exposure to C1498.SIY or C1498.SIY.CRT cells was also similar. In conclusion, it is clear that expression on CRT on the surface of AML cells leads to robust leukemia-specific T cell activation and expansion resulting in prolonged leukemia-specific survival in AML-bearing animals. Although a direct effect of CRT on innate immune cells, such as dendritic cells, is suspected, the molecular mechanism underlying the “CRT effect” remains unclear, and is being explored further through gene expression analysis in purified DCs which have engulfed CRT-expressing or control AML cells in vivo, as well as in animals genetically deficient in the putative CRT receptor, LRP, in dendritic cells. It will be of interest to analyze spontaneous CRT expression on AML cells from human samples and to correlate cell surface CRT expression with the presence or absence of spontaneous T cell responses to known AML antigens and with clinical outcomes. Disclosures No relevant conflicts of interest to declare.


mSystems ◽  
2021 ◽  
Author(s):  
Orna Ernst ◽  
Mohd M. Khan ◽  
Benjamin L. Oyler ◽  
Sung Hwan Yoon ◽  
Jing Sun ◽  
...  

Macrophages and monocytes are innate immune cells playing an important role in orchestrating the initial innate immune response to bacterial infection and the tissue damage. This response is facilitated by specific receptors on the cell surface and intracellularly.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2687-2694 ◽  
Author(s):  
Sook Kyung Chang ◽  
Bonnie K. Arendt ◽  
Jaime R. Darce ◽  
Xiaosheng Wu ◽  
Diane F. Jelinek

AbstractB-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) ligand superfamily. Although BLyS costimulates adaptive immune cells, the ability of BLyS to stimulate innate immune cells has not been described. Here, we show that BLyS strongly induces human monocyte survival, and activation as measured by proinflammatory cytokine secretion and up-regulation of costimulatory molecule expression. In addition, monocytes cultured with BLyS differentiated into macrophage-like cells. Regarding BLyS receptor(s) expression, freshly isolated monocytes bound low levels of exogenous BLyS and expressed primarily intracellular TACI, and cell surface TACI levels increased following monocyte activation. Of interest, bone marrow monocytes from some multiple myeloma patients expressed significant levels of cell surface TACI at isolation. Our findings indicate that BLyS plays a role in activating innate immune cells. Moreover, this study may explain more clearly why high BLyS production is often correlated with certain inflammatory autoimmune diseases and B-lymphocyte malignancies.


Sign in / Sign up

Export Citation Format

Share Document