scholarly journals Late activation of theRaf/MEK/ERKpathway is required for translocation of the respiratory syncytial virusFprotein to the plasma membrane and efficient viral replication

2018 ◽  
Vol 21 (1) ◽  
pp. e12955 ◽  
Author(s):  
Hannah F. Preugschas ◽  
Eike R. Hrincius ◽  
Carolin Mewis ◽  
Giao V.Q. Tran ◽  
Stephan Ludwig ◽  
...  
Virology ◽  
2006 ◽  
Vol 346 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Ian B. DeMeritt ◽  
Jagat P. Podduturi ◽  
A. Michael Tilley ◽  
Maciej T. Nogalski ◽  
Andrew D. Yurochko

2019 ◽  
Vol 261 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Carlos Santos-Valencia ◽  
Clotilde Cancio-Lonches ◽  
Adrian Trujillo-Uscanga ◽  
Beatriz Alvarado-Hernández ◽  
Anel Lagunes-Guillén ◽  
...  

2011 ◽  
Vol 85 (23) ◽  
pp. 12547-12556 ◽  
Author(s):  
N. Huang ◽  
W. Wu ◽  
K. Yang ◽  
A. L. Passarelli ◽  
G. F. Rohrmann ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126127 ◽  
Author(s):  
Liming Yan ◽  
Jie Zhang ◽  
Hong Guo ◽  
Shicui Yan ◽  
Qingxiu Chen ◽  
...  

Retrovirology ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 124 ◽  
Author(s):  
Mayte Coiras ◽  
Marta Montes ◽  
Immaculada Montanuy ◽  
María López-Huertas ◽  
Elena Mateos ◽  
...  

2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Shengwei Zhang ◽  
Yanliang Jiang ◽  
Qi Cheng ◽  
Yi Zhong ◽  
Yali Qin ◽  
...  

ABSTRACT Viral inclusion bodies (IBs), or replication factories, are unique structures generated by viral proteins together with some cellular proteins as a platform for efficient viral replication, but little is known about the mechanism underlying IB formation and fusion. Our previous study demonstrated that the interaction between the nucleoprotein (N) and phosphoprotein (P) of human parainfluenza virus type 3 (HPIV3), an enveloped virus with great medical impact, can form IBs. In this study, we found that small IBs can fuse with each other to form large IBs that enhance viral replication. Furthermore, we found that acetylated α-tubulin interacts with the N-P complex and colocalizes with IBs of HPIV3 but does not interact with the N-P complex of human respiratory syncytial virus or vesicular stomatitis virus and does not colocalize with IBs of human respiratory syncytial virus. Most importantly, enhancement of α-tubulin acetylation using the pharmacological inhibitor trichostatin A (TSA), RNA interference (RNAi) knockdown of the deacetylase enzymes histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), or expression of α-tubulin acetyltransferase 1 (α-TAT1) resulted in the fusion of small IBs into large IBs and effective viral replication. In contrast, suppression of acetylation of α-tubulin by overexpressing HDAC6 and SIRT2 profoundly inhibited the fusion of small IBs and viral replication. Our findings offer previously unidentified mechanistic insights into the regulation of viral IB fusion by acetylated α-tubulin, which is critical for viral replication. IMPORTANCE Inclusion bodies (IBs) are unique structures generated by viral proteins and some cellular proteins as a platform for efficient viral replication. Human parainfluenza virus type 3 (HPIV3) is a nonsegmented single-stranded RNA virus that mainly causes lower respiratory tract disease in infants and young children. However, no vaccines or antiviral drugs for HPIV3 are available. Therefore, understanding virus-host interactions and developing new antiviral strategies are increasingly important. Acetylation on lysine (K) 40 of α-tubulin is an evolutionarily conserved modification and plays an important role in many cellular processes, but its role in viral IB dynamics has not been fully explored. To our knowledge, our findings are the first to show that acetylated α-tubulin enhances viral replication by regulating HPIV3 IB fusion.


2014 ◽  
Vol 88 (14) ◽  
pp. 7776-7785 ◽  
Author(s):  
Akihisa Kato ◽  
Yoshitaka Hirohata ◽  
Jun Arii ◽  
Yasushi Kawaguchi

ABSTRACTWe recently reported that herpes simplex virus 1 (HSV-1) protein kinase Us3 phosphorylated viral dUTPase (vdUTPase) at serine 187 (Ser-187) to upregulate its enzymatic activity, which promoted HSV-1 replication in human neuroblastoma SK-N-SH cells but not in human carcinoma HEp-2 cells. In the present study, we showed that endogenous cellular dUTPase activity in SK-N-SH cells was significantly lower than that in HEp-2 cells and that overexpression of cellular dUTPase in SK-N-SH cells increased the replication of an HSV-1 mutant with an alanine substitution for Ser-187 (S187A) in vdUTPase to the wild-type level. In addition, we showed that knockdown of cellular dUTPase in HEp-2 cells significantly reduced replication of the mutant vdUTPase (S187A) virus but not that of wild-type HSV-1. Furthermore, the replacement of Ser-187 in vdUTPase with aspartic acid, which mimics constitutive phosphorylation, and overexpression of cellular dUTPase restored viral replication to the wild-type level in cellular dUTPase knockdown HEp-2 cells. These results indicated that sufficient dUTPase activity was required for efficient HSV-1 replication and supported the hypothesis that Us3 phosphorylation of vdUTPase Ser-187 upregulated vdUTPase activity in host cells with low cellular dUTPase activity to produce efficient viral replication.virus.IMPORTANCEIt has long been assumed that dUTPase activity is important for replication of viruses encoding a dUTPase and that the viral dUTPase (vdUTPase) activity was needed if host cell dUTPase activity was not sufficient for efficient viral replication. In the present study, we showed that the S187A mutation in HSV-1 vdUTPase, which impaired its enzymatic activity, reduced viral replication in SK-N-SH cells, which have low endogenous cellular dUTPase activity, and that overexpression of cellular dUTPase restored viral replication to the wild-type level. We also showed that knockdown of cellular dUTPase in HEp-2 cells, which have higher dUTPase activity than do SK-N-SH cells, reduced replication of HSV-1 with the vdUTPase mutation but had no effect on wild-type virus replication. This is the first report, to our knowledge, directly showing that dUTPase activity is critical for efficient viral replication and that vdUTPase compensates for low host cell dUTPase activity to produce efficient viral replication.


Sign in / Sign up

Export Citation Format

Share Document