Annexin A2 associates to feline calicivirus RNA in the replication complexes from infected cells and participates in an efficient viral replication

2019 ◽  
Vol 261 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Carlos Santos-Valencia ◽  
Clotilde Cancio-Lonches ◽  
Adrian Trujillo-Uscanga ◽  
Beatriz Alvarado-Hernández ◽  
Anel Lagunes-Guillén ◽  
...  
2016 ◽  
Vol 90 (7) ◽  
pp. 3411-3427 ◽  
Author(s):  
Paloma Hidalgo ◽  
Lourdes Anzures ◽  
Armando Hernández-Mendoza ◽  
Adán Guerrero ◽  
Christopher D. Wood ◽  
...  

ABSTRACTAdenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directedde novosynthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RCin vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses.IMPORTANCERC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they directde novosynthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.


2016 ◽  
Vol 90 (19) ◽  
pp. 8754-8767 ◽  
Author(s):  
Shinya Oda ◽  
Jun Arii ◽  
Naoto Koyanagi ◽  
Akihisa Kato ◽  
Yasushi Kawaguchi

ABSTRACTTo investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) tegument protein UL51 promotes viral replication, we screened for viral proteins that interact with UL51 in infected cells. Affinity purification of tagged UL51 in HSV-1-infected Vero cells was coupled with immunoblotting of the purified UL51 complexes with various antibodies to HSV-1 virion proteins. Subsequent analyses revealed that UL51 interacted with another tegument protein, UL14, in infected cells. Mutational analyses of UL51 showed that UL51 amino acid residues Leu-111, Ile-119, and Tyr-123 were required for interaction with UL14 in HSV-1-infected cells. Alanine substitutions of these UL51 amino acid residues reduced viral replication and produced an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm at levels comparable to those of UL51-null, UL14-null, and UL51/UL14 double-null mutations. In addition, although UL51 and UL14 colocalized at juxtanuclear domains in HSV-1-infected cells, the amino acid substitutions in UL51 produced aberrant localization of UL51 and UL14. The effects of these substitutions on localization of UL51 and UL14 were similar to those of the UL51-null and UL14-null mutations on localization of UL14 and UL51, respectively. These results suggested that the interaction between UL51 and UL14 was required for proper localization of these viral proteins in infected cells and that the UL51-UL14 complex regulated final viral envelopment for efficient viral replication.IMPORTANCEHerpesviruses contain a unique virion structure designated the tegument, which is a protein layer between the nucleocapsid and the envelope. HSV-1 has dozens of viral proteins in the tegument, which are thought to facilitate viral envelopment by interacting with other virion components. However, although numerous interactions among virion proteins have been reported, data on how these interactions facilitate viral envelopment is limited. In this study, we have presented data showing that the interaction of HSV-1 tegument proteins UL51 and UL14 promoted viral final envelopment for efficient viral replication. In particular, prevention of this interaction induced aberrant accumulation of partially enveloped capsids in the cytoplasm, suggesting that the UL51-UL14 complex acted in the envelopment process but not in an upstream event, such as transport of capsids to the site for envelopment. This is the first report showing that an interaction between HSV-1 tegument proteins directly regulated final virion envelopment.


Virology ◽  
2006 ◽  
Vol 346 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Ian B. DeMeritt ◽  
Jagat P. Podduturi ◽  
A. Michael Tilley ◽  
Maciej T. Nogalski ◽  
Andrew D. Yurochko

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 244
Author(s):  
Laura Albentosa-González ◽  
Rosario Sabariegos ◽  
Armando Arias ◽  
Pilar Clemente-Casares ◽  
Antonio Mas

Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 753
Author(s):  
Sneha Singh ◽  
Onkar B. Sawant ◽  
Shahzad I. Mian ◽  
Ashok Kumar

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1β) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


2016 ◽  
Vol 90 (16) ◽  
pp. 7066-7083 ◽  
Author(s):  
Saikrishna Gadhamsetty ◽  
Tim Coorens ◽  
Rob J. de Boer

ABSTRACTSeveral experiments suggest that in the chronic phase of human immunodeficiency virus type 1 (HIV-1) infection, CD8+cytotoxic T lymphocytes (CTL) contribute very little to the death of productively infected cells. First, the expected life span of productively infected cells is fairly long, i.e., about 1 day. Second, this life span is hardly affected by the depletion of CD8+T cells. Third, the rate at which mutants escaping a CTL response take over the viral population tends to be slow. Our main result is that all these observations are perfectly compatible with killing rates that are much faster than one per day once we invoke the fact that infected cells proceed through an eclipse phase of about 1 day before they start producing virus. Assuming that the major protective effect of CTL is cytolytic, we demonstrate that mathematical models with an eclipse phase account for the data when the killing is fast and when it varies over the life cycle of infected cells. Considering the steady state corresponding to the chronic phase of the infection, we find that the rate of immune escape and the rate at which the viral load increases following CD8+T cell depletion should reflect the viral replication rate, ρ. A meta-analysis of previous data shows that viral replication rates during chronic infection vary between 0.5 ≤ ρ ≤ 1 day−1. Balancing such fast viral replication requires killing rates that are several times larger than ρ, implying that most productively infected cells would die by cytolytic effects.IMPORTANCEMost current data suggest that cytotoxic T cells (CTL) mediate their control of human immunodeficiency virus type 1 (HIV-1) infection by nonlytic mechanisms; i.e., the data suggest that CTL hardly kill. This interpretation of these data has been based upon the general mathematical model for HIV infection. Because this model ignores the eclipse phase between the infection of a target cell and the start of viral production by that cell, we reanalyze the same data sets with novel models that do account for the eclipse phase. We find that the data are perfectly consistent with lytic control by CTL and predict that most productively infected cells are killed by CTL. Because the killing rate should balance the viral replication rate, we estimate both parameters from a large set of published experiments in which CD8+T cells were depleted in simian immunodeficiency virus (SIV)-infected monkeys. This confirms that the killing rate can be much faster than is currently appreciated.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Tristan X. Jordan ◽  
Glenn Randall

ABSTRACT Robust dengue virus (DENV) replication requires lipophagy, a selective autophagy that targets lipid droplets. The autophagic mobilization of lipids leads to increased β-oxidation in DENV-infected cells. The mechanism by which DENV induces lipophagy is unknown. Here, we show that infection with DENV activates the metabolic regulator 5′ adenosine-monophosphate activated kinase (AMPK), and that the silencing or pharmacological inhibition of AMPK activity decreases DENV replication and the induction of lipophagy. The activity of the mechanistic target of rapamycin complex 1 (mTORC1) decreases in DENV-infected cells and is inversely correlated with lipophagy induction. Constitutive activation of mTORC1 by depletion of tuberous sclerosis complex 2 (TSC2) inhibits lipophagy induction in DENV-infected cells and decreases viral replication. While AMPK normally stimulates TSC2-dependent inactivation of mTORC1 signaling, mTORC1 inactivation is independent of AMPK activation during DENV infection. Thus, DENV stimulates and requires AMPK signaling as well as AMPK-independent suppression of mTORC1 activity for proviral lipophagy. IMPORTANCE Dengue virus alters host cell lipid metabolism to promote its infection. One mechanism for altered metabolism is the induction of a selective autophagy that targets lipid droplets, termed lipophagy. Lipophagy mobilizes lipid stores, resulting in enhanced β-oxidation and viral replication. We show here that DENV infection activates and requires the central metabolic regulator AMPK for its replication and the induction of lipophagy. This is required for the induction of lipophagy, but not basal autophagy, in DENV-infected cells.


2015 ◽  
Vol 89 (11) ◽  
pp. 6057-6066 ◽  
Author(s):  
Colin Davies ◽  
Chris M. Brown ◽  
Dana Westphal ◽  
Joanna M. Ward ◽  
Vernon K. Ward

ABSTRACTMany viruses replicate most efficiently in specific phases of the cell cycle, establishing or exploiting favorable conditions for viral replication, although little is known about the relationship between caliciviruses and the cell cycle. Microarray and Western blot analysis of murine norovirus 1 (MNV-1)-infected cells showed changes in cyclin transcript and protein levels indicative of a G1phase arrest. Cell cycle analysis confirmed that MNV-1 infection caused a prolonging of the G1phase and an accumulation of cells in the G0/G1phase. The accumulation in G0/G1phase was caused by a reduction in cell cycle progression through the G1/S restriction point, with MNV-1-infected cells released from a G1arrest showing reduced cell cycle progression compared to mock-infected cells. MNV-1 replication was compared in populations of cells synchronized into specific cell cycle phases and in asynchronously growing cells. Cells actively progressing through the G1phase had a 2-fold or higher increase in virus progeny and capsid protein expression over cells in other phases of the cell cycle or in unsynchronized populations. These findings suggest that MNV-1 infection leads to prolonging of the G1phase and a reduction in S phase entry in host cells, establishing favorable conditions for viral protein production and viral replication. There is limited information on the interactions between noroviruses and the cell cycle, and this observation of increased replication in the G1phase may be representative of other members of theCaliciviridae.IMPORTANCENoroviruses have proven recalcitrant to growth in cell culture, limiting our understanding of the interaction between these viruses and the infected cell. In this study, we used the cell-culturable MNV-1 to show that infection of murine macrophages affects the G1/S cell cycle phase transition, leading to an arrest in cell cycle progression and an accumulation of cells in the G0/G1phase. Furthermore, we show that MNV replication is enhanced in the G1phase compared to other stages of the cell cycle. Manipulating the cell cycle or adapting to cell cycle responses of the host cell is a mechanism to enhance virus replication. To the best of our knowledge, this is the first report of a norovirus interacting with the host cell cycle and exploiting the favorable conditions of the G0/G1phase for RNA virus replication.


2020 ◽  
Author(s):  
Rory K. M. Long ◽  
Kathleen P. Moriarty ◽  
Ben Cardoen ◽  
Guang Gao ◽  
A. Wayne Vogl ◽  
...  

AbstractThe endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of endoplasmic reticulum (ER) membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to identify ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and may be of use to screen for inhibitors of infection by ER-reorganizing viruses.


Sign in / Sign up

Export Citation Format

Share Document