Reconstitution of T and NK cells after haploidentical hematopoietic cell transplantation using αβ T cell-depleted grafts and the clinical implication of γδ T cells

2017 ◽  
Vol 32 (1) ◽  
pp. e13147 ◽  
Author(s):  
Meerim Park ◽  
Ho Joon Im ◽  
Yu-Jin Lee ◽  
Nuree Park ◽  
Seongsoo Jang ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1175-1175
Author(s):  
Birgit Federmann ◽  
Matthias Haegele ◽  
Christoph Faul ◽  
Wichard Vogel ◽  
Lothar Kanz ◽  
...  

Abstract Haploidentical hematopoietic cell transplantation (HHCT) using CD3/CD19 depleted grafts may lead to faster engraftment and immune reconstitution since grafts contain also graft-facilitating-cells, CD34− progenitors, NK cells, and dendritic cells. Reduced intensity conditioning may also have a positive impact on immune reconstitution following HHCT. 26 adults received CD3/CD19 depleted HHCT after RIC (150–200 mg/m2 fludarabine, 10mg/kg thiothepa, 120 mg/m2 melphalan and 5mg/day OKT-3 (day −5 to +14)) at our institution between 2005–2008. We prospectively evaluated engraftment and immune reconstitution. B-, NK-, T- and T-cell subsets (CD3/8, CD4/8, CD4/45RA/RO), TCR-Vβ repertoire and NK-cell receptors (NKP30, NKP44, NKP46, NKG2D, CD158a/b/e, CD85j, NKG2A, CD161) were analyzed by FACS. Grafts contained 8.8×106 CD34+ (range, 4.3–18.0 ×106), 2.9×104 CD3+ (range, 1.2–9.2×104) and 3.6×107 CD56+ (range, 0.02–23.0 ×107) cells/kg. Engraftment was rapid with a median time to >500 granulocytes/μl of 11 days (range, 9–15) and a median time to >20 000 platelets/μl of 11 days (range, 8–23). Full chimerism was reached on day 14 (median; range, 6–26). NK-cell engraftment was rapid, reaching normal values on day 20 (median of 247 CD16+CD56+CD3− cells/μl (range, 1–886)) with NK cells comprising up to 70% of lymphocytes. B-cell reconstitution was delayed with 81 (range, 0–280) and 335 (range, 11–452) CD19+20+ cells/μl on days 150 and 400, respectively. T-cell reconstitution was impaired with 49 (range, 0–586) and 364 (range, 35–536) CD3+ cells/μl on day 60 and day 150, respectively. We observed an increase of CD3+CD8+ cells in contrast to CD3+CD4+ cells early after HHCT with a median of 24 (range, 0–399) vs 16 (range, 0–257) and 159 (range, 1–402) vs 96 (range, 18–289) cells/μl on day 50 and day 200, respectively. CD4+CD45RA+ T cells increased slowly while CD4+CD45RO+ T cells reconstituted faster with a median of 61 CD4+CD45RO+ cells/μl (range, 0–310) vs 24 CD4+CD45RA+ (range, 0 to 152) on day 100. Within the CD4+CD25+ regulatory T cells there was a slow regeneration with median of 14 CD4+CD25+ cells/μl (range, 0–96) on day 100 and 28 CD4+CD25+ cells/μl (range, 19–160) on day 200. CD14+CD45+ monocytes did not reach normal values within the time of observation with 7 CD14+CD45+ cells/μl (range, 0–21) on day 120 and 7 CD14+CD45+ cells (range, 2–381) on day 400. TCR-Vβ repertoire and NK-cell receptor reconstitution was analyzed so far in 7 and 8 patients, respectively. We found a skewed T-cell repertoire with oligoclonal T-cell expansions to day 100 and normalization after day 200. An increased natural cytotoxicity receptor (NKP30, NKP44, NKP46) and NKG2A, but decreased NKG2D and KIR-expression was observed on NK-cells until day 100. In conclusion, T- and B-cell reconstitution is delayed after HHCT using CD3/CD19 depleted grafts and RIC. However, T-cell reconstitution is faster compared to data published with CD34 selected grafts and myeloablative conditioning. A fast NK-cell reconstitution early after HHCT was observed. Thus a combination of reduced intensity conditioning with CD3/CD19 depleted grafts appears to accelerate the immune recovery after haploidentical stem cell transplantation.


Author(s):  
Derek J Hanson ◽  
Hu Xie ◽  
Danielle M Zerr ◽  
Wendy M Leisenring ◽  
Keith R Jerome ◽  
...  

Abstract We sought to determine whether donor-derived human herpesvirus (HHV) 6B–specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non–T-cell–depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B–specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B–specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.


2011 ◽  
Vol 208 (5) ◽  
pp. 1069-1082 ◽  
Author(s):  
Daigo Hashimoto ◽  
Andrew Chow ◽  
Melanie Greter ◽  
Yvonne Saenger ◽  
Wing-Hong Kwan ◽  
...  

Acute graft-versus-host disease (GVHD) results from the attack of host tissues by donor allogeneic T cells and is the most serious limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Host antigen-presenting cells are thought to control the priming of alloreactive T cells and the induction of acute GVHD after allo-HCT. However, whereas the role of host DC in GVHD has been established, the contribution of host macrophages to GVHD has not been clearly addressed. We show that, in contrast to DC, reducing of the host macrophage pool in recipient mice increased donor T cell expansion and aggravated GVHD mortality after allo-HCT. We also show that host macrophages that persist after allo-HCT engulf donor allogeneic T cells and inhibit their proliferation. Conversely, administration of the cytokine CSF-1 before transplant expanded the host macrophage pool, reduced donor T cell expansion, and improved GVHD morbidity and mortality after allo-HCT. This study establishes the unexpected key role of host macrophages in inhibiting GVHD and identifies CSF-1 as a potential prophylactic therapy to limit acute GVHD after allo-HCT in the clinic.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4582-4582
Author(s):  
Shogo Kobayashi ◽  
Atsushi Kikuta ◽  
Masaki Ito ◽  
Hideki Sano ◽  
Kazuhiro Mochizuki ◽  
...  

Abstract Abstract 4582 Refractory acute leukemia who do not achieve second or subsequent complete remission (CR) have an extremely poor prognosis. Non-T-cell depleted (TCD) HLA-haploidentical hematopoietic cell transplantation (haplo-HCT) is a form of adoptive cellular therapy that has a high degree of efficacy in hematologic malignancies. The major problems of non-TCD haplo-HCT are severe graft-versus-host disease (GVHD), graft failure (GF) and high-risk of early death. We conducted non-TCD haplo-HCT for children with acute leukemia in non-remission as a novel therapeutic strategy. Five consecutive children under 15 (0-13) years old with hematological malignancies underwent non-TCD haplo-HCT from family donors between November 2002 and July 2010 at Fukushima Medical University Hospital. All patients were in non-remission at transplantation. One donor was mother and the other 4 donors were fathers of the patients. One patient was in 3 loci, and 4 patients were mismatched 4 loci of the allele level for HLA-A, -B, -C and -DRB1. The blast count in the marrow before transplantation was 80%, 75%, 34%, 10% and 96%, respectively. There were two acute myelogenous leukemia and three acute lymphoblastic leukemia. There were two refractory diseases to chemotherapy and three relapses after HSCT. All of them received myeloablative conditioning (2 Busulfan based, 3 TBI based). Type of graft were bone marrow in one and peripheral blood stem cell in 4. Total of 9.9 ×108/kg of nucleated bone marrow cells were infused in the patient received BMT. The median number of TNC and CD34+ cell doses were 11 (8-21.4)×108/kg and 7.9 (6.5-8.8)×106/kg in PBSCT, respectively. GVHD prophylaxis were combination of tacrolimus, methotrexate was given in one patient, combination of tacrolimus, methotrexate and prednisolone in one, combination of tacrolimus, methotrexate, prednisolone, and antihuman thymocyte immunoglobulin (ATG) in 3. All patients achieved primary engraftment at median of 13 days (11 -15) and achieved complete remission. Five patients developed acute GVHD, with grade 1 in two patients, grade 2 in two patients, grade 3 in one patient. Chronic GVHD occurred in 2 of 4 evaluable patients. Infectious complications including 2 CMV reactivation, 1 CMV-IP, 1 invasive aspergillosis, 1 candida sepsis were observed. One patient died from CMV-IP in remission, remaining 4 patients survived disease-free + 4, + 9, + 10 and + 94 months after non-TCD haplo-HCT, respectively. These preliminary results suggested that non-TCD haplo-HCT is effective strategy in children with refractory leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3832-3839 ◽  
Author(s):  
Ming-Tseh Lin ◽  
Li-Hui Tseng ◽  
Haydar Frangoul ◽  
Ted Gooley ◽  
Ji Pei ◽  
...  

Lymphopenia and immune deficiency are significant problems following allogeneic hematopoietic cell transplantation (HCT). It is largely assumed that delayed immune reconstruction is due to a profound decrease in thymus-dependent lymphopoiesis, especially in older patients, but apoptosis is also known to play a significant role in lymphocyte homeostasis. Peripheral T cells from patients who received HCT were studied for evidence of increased cell death. Spontaneous apoptosis was measured in CD3+ T cells following a 24-hour incubation using 7-amino-actinomycin D in conjunction with the dual staining of cell surface antigens. Apoptosis was significantly greater among CD3+ T cells taken from patients 19-23 days after transplantation (30.4% ± 12.5%,P < .05), and 1 year after transplantation (9.7% ± 2.8%, P < .05) compared with healthy controls (4.0% ± 1.5%). Increased apoptosis occurred preferentially in HLA (human leukocyte antigen)-DR positive cells and in both CD3+/CD4+ and CD3+/CD8+ T-cell subsets, while CD56+/CD3− natural killer cells were relatively resistant to apoptosis. The extent of CD4+T-cell apoptosis was greater in patients with grade II-IV acute graft-versus-host disease (GVHD) (33.9% ± 11.3%) compared with grade 0-I GVHD (14.6 ± 6.5%, P < .05). T-cell apoptosis was also greater in patients who received transplantations from HLA-mismatched donors (39.5% ± 10.4%,P < .05) or HLA-matched unrelated donors (32.1% ± 11.4%, P < .05) compared with patients who received transplantations from HLA-identical siblings (19.6% ± 6.7%). The intensity of apoptosis among CD4+ T cells was significantly correlated with a lower CD4+ T-cell count. Together, these observations suggest that activation of T cells in vivo, presumably by alloantigens, predisposes the cells to spontaneous apoptosis, and this phenomenon is associated with lymphopenia. Activation-induced T-cell apoptosis may contribute to delayed immune reconstitution following HCT.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1132-1132
Author(s):  
Melhem M. Solh ◽  
Rathmann Kristin ◽  
Sauvi chang-Fong ◽  
Jeremiah Oyer ◽  
Wesam B. Ahmed ◽  
...  

Abstract Method of Mobilization: Implication on Cell Subsets in The Graft and Immune Reconstitution post Autologous Hematopoietic Cell Transplantation (AHCT) The optimal mobilization method for either myeloma or lymphoma patients undergoing AHCT is still debatable and strategies for graft collection vary between different institutions. Plerixafor, a CXCR4 antagonist is used for peripheral blood stem cell mobilization in multiple myeloma and non-Hodgkins lymphoma patients requiring AHCT. The effect of plerixafor on graft composition has scarce data that are based mostly on cryopreserved samples. Moreover; the effect of plerixafor on immune reconstitution and hematologic recovery post AHCT has not been well evaluated. The goal of our study was to compare graft composition, hematologic and immune reconstitution recovery among patients mobilized with plerixafor plus G-CSF to those mobilized with G-CSF alone. Methods: 49 patients eligible for AHCT were enrolled on a single arm prospective trial at a single transplant center. All patients were mobilized with G-CSF 10µg/kg/day for 4 consecutive days. A peripheral blood CD34 level of <20/µl on day 4 was used as a cutoff to use plerixafor 0.24mg/kg in addition to G-CSf on 9pm of the fourth day. Peripheral blood collection was started on day 5 and was continued till the target dose is achieved or a minimum CD 34+ cell dose of >2x106 cells/Kg was obtained after 3 collection days. Samples from the freshly collected graft and patients' peripheral blood on days +30 and +60 were analyzed by flow cytometry (BD FACSCanto II) . A single platform assay was used (Beckman-Coulter Stem kit) via a ISHAGE protocol. The antibody cocktail contained the following pre-conjugated monoclonal antibodies: CD56-PE (Miltenyi Biotech, Auburn, CA), CD3-APC, CD16-FITC, (Beckman Coulter, Brea, CA), CD19-PE-CY7 (BD Biosciences, San Jose, CA). Data were acquired using BD FACSCanto II (BD Biosciences) and analyzed with the FACSDiva software (BD Biosciences) to quantify CD3+ T cells, CD3+ CD56+ NK-like T cells, CD56+ CD16+ and CD56+ CD16- NK cells as well as CD19+ B cells. Results: 49 patients with a median age of 58 years (range 21-75) were mobilized with either G-CSF alone (N=16) or plerixafor +G-CSF (G+P)(N=33).The median number of collection days was 1.42 and 1.81 (p=0.2) and the median collected CD34+ dose was 8.28x106/kg and 5.24x106 /kg (p=022) in the G+P and G-CSF alone groups respectively. Both groups had similar times to neutrophil and platelet engraftment. The graft analysis showed a white blood count of 309x109/l and 262x109/l (p=0.38), median percentage of CD34+ cells of 0.75% and 0.73% (p=0.81), percentage of CD3+ T cells of 25.6% and 22% (p=0.6) in the G+P and G-CSF alone groups resepectively. Both groups had similar proportions of CD3+, CD4+,CD8+, NK, NKT and iNKT cells in the mobilized grafts. Peripheral blood samples at day +30 and day +60 were analyzed for T cell markers and hematologic recovery (table 1). There was no significant difference between absolute lymphocyte counts, NK cell counts, T cells and absolute neutrophil count. Conclusion: Plerixafor when combined with G-CSF helps in achieving mobilization goals in patients predicted to be poor mobilizers based on peripheral CD34 levels. The addition of plerixafor doesn't not seem to affect T cell composition of the graft and yields similar hematologic and immune recovery when compared to mobilization with G-CSF alone. Table 1: Immune Reconstitution at Day 30 and Day 60 post Autologous Transplantation Treatment Group G-CSF (N=16) Plerixafor + G-CSF (N=33) P-value G-CSF (N=16) Plerixafor + G-CSF (N=33) P-value Day 30 Day 60 WBC 5.08 5.41 0.873 4.94 5.38 0.654 HGB 10.86 11.19 0.353 11.22 11.17 0.757 HCT 32.35 33.66 0.321 33.36 33.53 0.565 PLT 119.88 161.42 0.068 166.94 173.73 0.949 Abs Lymph 1.09 1.44 0.296 1.41 1.50 0.974 % NK 26.14 30.38 0.277 11.53 20.09 0.095 Abs NK 0.31 0.35 0.186 0.17 0.21 0.470 % T cell 67 60 0.183 76.15 67.39 0.340 Abs T cell 0.72 0.96 0.717 1.35 .82 0.095 NKT%* 5.28 3.33 8.25 3.38 B cell % 2.38 1.52 0.922 2.63 5.58 0.424 Abs. Neut count 2.99 2.64 0.488 2.85 3.01 0.848 Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document