scholarly journals Future fire regimes increase risks to obligate‐seeder forests

Author(s):  
Sarah C. McColl‐Gausden ◽  
Lauren T. Bennett ◽  
Dan A. Ababei ◽  
Hamish G. Clarke ◽  
Trent D. Penman
Keyword(s):  

Ecosystems ◽  
2013 ◽  
Vol 17 (2) ◽  
pp. 258-270 ◽  
Author(s):  
Annabel L. Smith ◽  
David Blair ◽  
Lachlan McBurney ◽  
Sam C. Banks ◽  
Philip S. Barton ◽  
...  


2003 ◽  
Vol 12 (4) ◽  
pp. 369 ◽  
Author(s):  
Rohan Fisher ◽  
Tom Vigilante ◽  
Cameron Yates ◽  
Jeremy Russell-Smith

The paper reports on the development of a decadal fire history, 1990–1999, derived from Landsat imagery, and associated assessment of landscape-scale patterns, in a remote, sparsely human-populated region of the high rainfall zone of monsoonal north-western Australia. The assembled fire history confirms observations, derived from coarser-scale imagery, that substantial areas of the North Kimberley are burnt each year. The annual mean extent of burning was 31% (albeit involving marked inter-annual variability), with most burning occurring in the latter part of the dry season under relatively severe fire weather conditions. Extent of burning was found to be associated with intensity of landuse; most burning occurred on pastoral lands, particularly in association with more fertile basalt soils. Based on previous modelling studies, predicted effects of contemporary fire regimes include increased development of woody regeneration size-classes, especially on non-basalt substrates. In contrast, on sandstone-derived substrata, fire interval data indicate that longer-lived obligate-seeder shrub species are likely to be suppressed and ultimately displaced by contemporary fire regimes. Such observations are supported by recent evidence of regional collapse of the long-lived obligate seeder tree species, Callitris intratropica. Collectively, assembled data point to the need to undertake a thorough appraisal of the status of regional biota in this remote, ostensibly ecologically intact region.



2007 ◽  
Vol 55 (2) ◽  
pp. 91 ◽  
Author(s):  
Peter J. Myerscough ◽  
Peter J. Clarke

Four fires burned vegetation on a sand plain on a 4-km stretch of Pleistocene beach ridges between 1980–1981 and 1998. Fires of 1980–81 and 1991 burned the whole area. Those of 1994 and 1998 burned only parts of it. Cover of individual species and bare ground was scored on permanent plots at intervals between 1990 and 1996. Ordination and generalised linear model analysis of the data showed strong spatial variation between dry and wet heaths, four transects and plots within transects. This was strictly conserved through time, owing to the rapid regrowth of abundant resprouting species, most of which, after 1 year, showed little change in cover with increasing time-since-fire. Vegetation of the dry and wet heaths showed no detectable convergence or divergence in similarity with time-since-fire or variation of interval between fires. Changes with time-since-fire were found, and some change with the length of fire interval, owing to variation in cover of obligate-seeder species, which increased steadily with time up to 10 years since fire, and showed some decrease when fire interval decreased to 3.75 years. At 10 years since fire, obligate-seeder species reached ~25% of the totalled cover scores for all species, with 75% from resprouting species. Dry and wet heath were broadly similar in their general pattern of regrowth after fire, but in dry heath bare ground was more slowly covered than in wet heath, and wet heath had a higher cover of monocotyledons, especially restiads and sedges. Wet heath was more flammable than dry heath in the patchy fire of 1998. The heaths observed appeared highly resilient to recent fire regimes. Resprouting species always dominated their canopy; none of their obligate-seeding species formed a dominant overstorey canopy.



Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.



Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.





Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Willem A. Nieman ◽  
Brian W. van Wilgen ◽  
Alison J. Leslie

Abstract Background Fire is an important process that shapes the structure and functioning of African savanna ecosystems, and managers of savanna protected areas use fire to achieve ecosystem goals. Developing appropriate fire management policies should be based on an understanding of the determinants, features, and effects of prevailing fire regimes, but this information is rarely available. In this study, we report on the use of remote sensing to develop a spatially explicit dataset on past fire regimes in Majete Wildlife Reserve, Malawi, between 2001 and 2019. Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to evaluate the recent fire regime for two distinct vegetation types in Majete Wildlife Reserve, namely savanna and miombo. Additionally, a comparison was made between MODIS and Visible Infrared Imager Radiometer Suite (VIIRS) images by separately evaluating selected aspects of the fire regime between 2012 and 2019. Results Mean fire return intervals were four and six years for miombo and savanna vegetation, respectively, but the distribution of fire return intervals was skewed, with a large proportion of the area burning annually or biennially, and a smaller proportion experiencing much longer fire return intervals. Variation in inter-annual rainfall also resulted in longer fire return intervals during cycles of below-average rainfall. Fires were concentrated in the hot-dry season despite a management intent to restrict burning to the cool-dry season. Mean fire intensities were generally low, but many individual fires had intensities of 14 to 18 times higher than the mean, especially in the hot-dry season. The VIIRS sensors detected many fires that were overlooked by the MODIS sensors, as images were collected at a finer scale. Conclusions Remote sensing has provided a useful basis for reconstructing the recent fire regime of Majete Wildlife Reserve, and has highlighted a current mismatch between intended fire management goals and actual trends. Managers should re-evaluate fire policies based on our findings, setting clearly defined targets for the different vegetation types and introducing flexibility to accommodate natural variation in rainfall cycles. Local evidence of the links between fires and ecological outcomes will require further research to improve fire planning.



Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 934
Author(s):  
Andy McEvoy ◽  
Becky K. Kerns ◽  
John B. Kim

Optimized wildfire risk reduction strategies are generally not resilient in the event of unanticipated, or very rare events, presenting a hazard in risk assessments which otherwise rely on actuarial, mean-based statistics to characterize risk. This hazard of actuarial approaches to wildfire risk is perhaps particularly evident for infrequent fire regimes such as those in the temperate forests west of the Cascade Range crest in Oregon and Washington, USA (“Westside”), where fire return intervals often exceed 200 years but where fires can be extremely intense and devastating. In this study, we used wildfire simulations and building location data to evaluate community wildfire exposure and identify plausible disasters that are not based on typical mean-based statistical approaches. We compared the location and magnitude of simulated disasters to historical disasters (1984–2020) in order to characterize plausible surprises which could inform future wildfire risk reduction planning. Results indicate that nearly half of communities are vulnerable to a future disaster, that the magnitude of plausible disasters exceeds any recent historical events, and that ignitions on private land are most likely to result in very high community exposure. Our methods, in combination with more typical actuarial characterizations, provide a way to support investment in and communication with communities exposed to low-probability, high-consequence wildfires.



2021 ◽  
Author(s):  
Mark A. Cochrane ◽  
David M. J. S. Bowman
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document