Burnt to blazes: landscape fires, resilience and habitat interaction in frequently burnt coastal heath

2007 ◽  
Vol 55 (2) ◽  
pp. 91 ◽  
Author(s):  
Peter J. Myerscough ◽  
Peter J. Clarke

Four fires burned vegetation on a sand plain on a 4-km stretch of Pleistocene beach ridges between 1980–1981 and 1998. Fires of 1980–81 and 1991 burned the whole area. Those of 1994 and 1998 burned only parts of it. Cover of individual species and bare ground was scored on permanent plots at intervals between 1990 and 1996. Ordination and generalised linear model analysis of the data showed strong spatial variation between dry and wet heaths, four transects and plots within transects. This was strictly conserved through time, owing to the rapid regrowth of abundant resprouting species, most of which, after 1 year, showed little change in cover with increasing time-since-fire. Vegetation of the dry and wet heaths showed no detectable convergence or divergence in similarity with time-since-fire or variation of interval between fires. Changes with time-since-fire were found, and some change with the length of fire interval, owing to variation in cover of obligate-seeder species, which increased steadily with time up to 10 years since fire, and showed some decrease when fire interval decreased to 3.75 years. At 10 years since fire, obligate-seeder species reached ~25% of the totalled cover scores for all species, with 75% from resprouting species. Dry and wet heath were broadly similar in their general pattern of regrowth after fire, but in dry heath bare ground was more slowly covered than in wet heath, and wet heath had a higher cover of monocotyledons, especially restiads and sedges. Wet heath was more flammable than dry heath in the patchy fire of 1998. The heaths observed appeared highly resilient to recent fire regimes. Resprouting species always dominated their canopy; none of their obligate-seeding species formed a dominant overstorey canopy.


2019 ◽  
Vol 49 (10) ◽  
pp. 1256-1264 ◽  
Author(s):  
Rachel K. Chai ◽  
Robert A. Andrus ◽  
Kyle Rodman ◽  
Brian J. Harvey ◽  
Thomas T. Veblen

Climate-induced increases in tree mortality are reported for many forests worldwide. Understanding the potential effects on carbon pools requires long-term monitoring of changes in forest biomass. We measured aboveground biomass (AGB) of living trees over a 34-year period (1982–2016) in permanent plots with varying stand ages, species compositions, and topographic settings in a subalpine forest in the Colorado Front Range. Stand-level and species-level AGB varied spatially and temporally in relation to stand age, successional processes, and site moisture classification. Young (ca. 122 years) postfire stands composed of lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson) had lower mean AGB than older (>250 years) mixed-species stands. Mesic stands had higher AGB than xeric or hydric stands of similar age. At the level of individual species, significant shifts in AGB among species were primarily explained by successional replacement of shade-intolerant pines by shade-tolerant Engelmann spruce (Picea engelmannii Parry ex Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.). The permanent plot network recorded significant shifts in species dominance and tree densities between 1982 and 2016, reflecting successional patterns developing over several centuries and the effects of recent localized windthrow, insects, and pathogens. Despite increases in tree mortality, there was a general pattern of increasing AGB across the forest.



2003 ◽  
Vol 12 (4) ◽  
pp. 349 ◽  
Author(s):  
Cameron Yates ◽  
Jeremy Russell-Smith

The fire-prone savannas of northern Australia comprise a matrix of mostly fire-resilient vegetation types, with embedded fire-sensitive species and communities particularly in rugged sandstone habitats. This paper addresses the assessment of fire-sensitivity at the landscape scale, drawing on detailed fire history and vegetation data assembled for one large property of 9100�km2, Bradshaw Station in the Top End of the Northern Territory, Australia. We describe (1) the contemporary fire regime for Bradshaw Station for a 10 year period; (2) the distribution and status of 'fire sensitive' vegetation; and (3) an assessment of fire-sensitivity at the landscape scale. Fire-sensitive species (FSS) were defined as obligate seeder species with minimum maturation periods of at least 3 years. The recent fire history for Bradshaw Station was derived from the interpretation of fine resolution Landsat MSS and Landsat TM imagery, supplemented with mapping from coarse resolution NOAA-AVHRR imagery where cloud had obstructed the use of Landsat images late in the fire season (typically October–November). Validation assessments of fire mapping accuracy were conducted in 1998 and 1999. On average 40% of Bradshaw burnt annually with about half of this, 22%, occurring after August (Late Dry Season LDS), and 65% of the property burnt 4 or more times, over the 10 year period; 89% of Bradshaw Station had a minimum fire return interval of less than 3 years in the study period. The derived fire seasonality, frequency and return interval data were assessed with respect to landscape units (landsystems). The largest landsystem, Pinkerton (51%, mostly sandstone) was burnt 41% on average, with about 70% burnt four times or more, over the 10 year period. Assessment of the fire-sensitivity of individual species was undertaken with reference to data assembled for 345 vegetation plots, herbarium records, and an aerial survey of the distribution of the long-lived obligate-seeder tree species Callitris intratropica. A unique list of 1310 plant species was attributed with regenerative characteristics (i.e. habit, perenniality, resprouting capability, time to seed maturation). The great majority of FSS species were restricted to rugged sandstone landforms. The approach has wider application for assessing landscape fire-sensitivity and associated landscape health in savanna landscapes in northern Australia, and elsewhere.



2011 ◽  
Vol 75 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Elizabeth A. Lynch ◽  
Sara C. Hotchkiss ◽  
Randy Calcote

AbstractWe show how sedimentary charcoal records from multiple sites within a single landscape can be used to compare fire histories and reveal small scale patterns in fire regimes. Our objective is to develop strategies for classifying and comparing late-Holocene charcoal records in Midwestern oak- and pine-dominated sand plain ecosystems where fire regimes include a mix of surface and crown fires. Using standard techniques for the analysis of charcoal from lake sediments, we compiled 1000- to 4000-yr-long records of charcoal accumulation and charcoal peak frequencies from 10 small lakes across a sand plain in northwestern Wisconsin. We used cluster analysis to identify six types of charcoal signatures that differ in their charcoal influx rates, amount of grass charcoal, and frequency and magnitude of charcoal peaks. The charcoal records demonstrate that while fire histories vary among sites, there are regional patterns in the occurrence of charcoal signature types that are consistent with expected differences in fire regimes based on regional climate and vegetation reconstructions. The fire histories also show periods of regional change in charcoal signatures occurring during times of regional climate changes at ~700, 1000, and 3500 cal yr BP.



ZooKeys ◽  
2016 ◽  
Vol 633 ◽  
pp. 1-93 ◽  
Author(s):  
Jose Fernandez-Triana ◽  
Caroline Boudreault ◽  
Joel Buffam ◽  
Ronald Maclean

Microgastrinae wasps (Hymenoptera, Braconidae) from the city of Ottawa and its surroundings (a 50-km radius circle, ~7,800 km2) were studied based on 1,928 specimens collected between 1894 and 2010, and housed in the Canadian National Collection of Insects. A total of 158 species from 21 genera were identified, which is by far the highest number of species ever recorded for a locality in North America. An annotated checklist of species is provided.Choerasparasitellae(Bouché, 1834) andPholetesornanus(Reinhard, 1880) are recorded for the first time in the Nearctic (previously only known from the Palearctic region),Cotesiadepressa(Viereck, 1912) is recorded for the first time in Canada (previously only known from the United States), andCotesiahemileucae(Riley, 1881) andProtapantelesphlyctaeniae(Muesebeck, 1929) are recorded for the first time in the province of Ontario. In Ottawa the most diverse genera areCotesia,Apanteles,Microplitis,Pholetesor,Microgaster, andDolichogenidea, altogether comprising 77% of the species found in the area. A total of 73 species (46%) were represented by only one or two specimens, suggesting that the inventory for Ottawa is still relatively incomplete. Seasonal distribution showed several peaks of activity, in spring, summer, and early fall. That general pattern varied for individual species, with some showing a single peak of abundance either in the summer or towards the end of the season, others species attaining two peaks, in late spring and late summer, or in early summer and early fall, and yet others attaining up to three different peaks, in spring, summer and fall. At least 72 of the Microgastrinae species from Ottawa have been previously associated with 554 species of Lepidoptera as hosts – but those historical literature records are not always reliable and in many cases are based on data from areas beyond Ottawa. Thus, our knowledge of the associations between the 158 species of microgastrine parasitoids and the caterpillars of the 2,064 species of Lepidoptera recorded from Ottawa is still very incomplete.



Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1069
Author(s):  
Taylor M. Buskey ◽  
Margaret E. Maloney ◽  
Julia I. Chapman ◽  
Ryan W. McEwan

Temperate forests of eastern North America are subject to multiple invasions from non-native species that have the potential to drive long-term dynamics in biodiversity. Garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande) is an invasive plant in many deciduous forests, and management efforts often focus on removing this species to initiate native species restoration. Agrilus planipennis Fairmaire (emerald ash borer; Coleoptera: Buprestidae) is a non-native insect pest that has caused substantial loss of ash trees (Fraxinus spp. L.) in North America. Our goal was to understand how the herbaceous layer in an old-growth forest responded to the removal of a significant invasion of A. petiolata and the loss of Fraxinus spp. due to A. planipennis. Herbaceous diversity and environmental parameters were measured in 32 permanent plots (1 m2 each) from 2012 to 2020 in an old-growth forest remnant that had experienced A. petiolata invasion and subsequent removal as well as mortality of Fraxinus spp. due to A. planipennis. Near-total loss of Fraxinus spp. as a canopy tree was not associated with changes in the understory light environment, possibly due to rapid canopy closure by adjacent trees not susceptible to the insect. Alliaria petiolata removal was associated with changes in herbaceous species richness and possibly shifts in individual species importance. Vegetation–environment relationships remained stable throughout the sampling period, suggesting that resource-related factors that structure the herb layer prevailed throughout the changes associated with Fraxinus spp. mortality and A. petiolata management. From a natural area management perspective, our data offer support for the idea that A. petiolata removal influences herb-layer diversity and indicate that in stands with a diverse tree community, the loss of Fraxinus spp. may not directly influence understory biodiversity.



2013 ◽  
Vol 22 (7) ◽  
pp. 947 ◽  
Author(s):  
Katrin Lowe ◽  
J. Guy Castley ◽  
Jean-Marc Hero

Fire has varying effects on species ecology. Knowledge of amphibian responses to fire is particularly limited, with variable responses reported amongst studies. Variability is attributed to differences in fire regimes, sampling methodologies, historical exposure to fire and species traits. Acid frogs, a group of amphibians restricted to acidic coastal heath wetlands of eastern Australia, occupy a discrete ecological niche that is exposed to regular and intense fires. Visual encounter surveys conducted monthly over 2 years revealed different short- and long-term responses to fire in three threatened acid frog species (Litoria olongburensis, Litoria freycineti and Crinia tinnula). Fires altered the thermal properties of habitats by increasing substrate temperature and widening daily temperature ranges. Acid frog populations did not suffer adversely from moderate intensity fires as suitable refuges, including standing water, were available. All species were present shortly after fire with subsequent successful reproduction occurring once wetlands were sufficiently inundated. Time since fire was a strong predictor of landscape scale differences in average relative abundance of acid frogs, yet the relationships varied among species. This highlights the importance of assessing community-wide responses to fire at the landscape scale. The dynamic and adaptive responses observed within acid frog populations demonstrate substantial resilience to fire processes in these fire prone environments.



2009 ◽  
Vol 57 (4) ◽  
pp. 326 ◽  
Author(s):  
Fiona Coates ◽  
Michael Duncan

Caladenia orientalis (G.W.Carr) Hopper & A.P.Br. is a critically endangered orchid. The largest known populations are confined to fire-managed coastal heathland in southern Victoria. Trends in population dynamics at two closely occurring sites were evaluated against time since fire and rainfall, between 2000 and 2008, to provide ecological and biological information relevant to population management. At both sites, decreased plant size was inversely correlated with time since fire and the number of non-reproductive plants was positively correlated with time since fire. Rates of flowering were inversely correlated with time since fire at only one site (Population 2). The vegetation at this site rapidly accumulated after fire, whereas recovery was relatively slow at the other site. Rainfall was not correlated with rates of flowering or leaf width at either of the study sites, although there was a weak inverse relationship between rainfall and the number of non-reproductive plants at one site (Population 1). Rates of pollen transport and fruit set were within reported ranges for deceptive species. Fruiting plants were significantly smaller in the following year, whereas non-reproductive plants remained the same size. The results suggest that there may be costs associated with reproductive effort, and that hand-pollinating plants to boost seed production may lead to decreased plant size in the following year. Annual variation in rates of flowering may be influenced by previous reproductive effort. However, long-term population trends are better explained by competition from dominant shrubs, which become increasingly abundant with a lack of fire. Future management prescriptions should include site-specific fire regimes to maintain an open heathland.



2015 ◽  
Vol 24 (1) ◽  
pp. 59 ◽  
Author(s):  
Emma E. Burgess ◽  
Patrick Moss ◽  
Murray Haseler ◽  
Martine Maron

The post-fire response of vegetation reflects not only a single fire event but is the result of cumulative effects of previous fires in the landscape. For effective ecological fire management there is a need to better understand the relationship between different fire regimes and vegetation structure. The study investigated how different fire regimes affect stand structure and composition in subtropical eucalypt woodlands of central Queensland. We found that fire history category (i.e. specific combinations of time since fire, fire frequency and season of last burn) strongly influenced richness and abundance of species categorised as mid-storey trees and those individuals currently in the mid-level strata. Time since fire and fire frequency appeared to have the strongest influence. A longer time since fire (>4 years since last burn), combined with infrequent fires (<2 fires in 12 year period) appeared to promote a dense mid-storey with the opposite conditions (<4 years since last burn; >2 fires in 12 year period) promoting more-open woodlands. Consideration of these combined fire regime attributes will allow fire managers to plan for a particular range of fire-mediated patches to maintain the desired diversity of vegetation structures.



2009 ◽  
Vol 17 (NA) ◽  
pp. 249-265 ◽  
Author(s):  
Richard LaPaix ◽  
Bill Freedman ◽  
David Patriquin

Indicators are being sought for monitoring the ecological integrity of forests and other kinds of ecosystems. Biological measures are commonly used as indicators because of their inherent ecological importance and ability to provide insight into environmental change. Such measures are commonly based on data from sets of permanent plots in which the abundances of plant species are monitored. However, the data may be difficult to interpret, especially if corresponding information on natural and anthropogenic stressors is lacking. In this review, we examine general principles of indicator use and discuss the types of plot-based compositional measures obtained from vegetation that may be most relevant for monitoring ecological integrity. Our focus is on the ground vegetation of forested ecosystems, but the principles discussed are relevant to other vegetation types. Individual plant species, guilds, aliens, diversity indices, Ellenberg indicator values, the floristic quality assessment index, multivariate and multimetric indicators are examined, as well as concepts of threshold changes and the need for reference states. The usefulness of any given approach tends to be highly context specific. In particular, the value of using individual species as indicators is highly dependant on factors such as the character of the floristic community of interest and the types and intensities of anthropogenic stressors. Alien species are considered to be especially valuable indicators of changes in ecological integrity due to their established relationships with anthropogenic stressors, known historical state, relevance to all floristic communities, and ability to cause undesirable changes to biodiversity and ecological processes.



Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 436 ◽  
Author(s):  
Jamie Burton ◽  
Jane Cawson ◽  
Philip Noske ◽  
Gary Sheridan

High frequency wildfires can shift the structure and composition of obligate seeder forests and initiate replacement with alternative vegetation states. In some forests, the alternative stable state is drier and more easily burned by subsequent fires, driving a positive feedback that promotes further wildfire and perpetuates alternative stable states. Mountain Ash (Eucalyptus regnans (F.Muell.)) forests are highly valued for their biodiversity, water, timber and carbon. Fires are a natural part of the lifecycle of these forests, but too frequent fires can eliminate Mountain Ash and trigger a transition to lower stature, non-eucalypt forests which are dominated by understorey species. This study sought to better understand the fuel moisture dynamics of alternative stable states resulting from high frequency wildfires. A vegetation mosaic in the Central Highlands, Victoria created a unique opportunity to measure fuel moisture in adjacent forest stands that differed in overstorey species composition and time since fire. Specifically, we measured fuel moisture and microclimate at two eucalypt sites (9 and 79 years old) and three non-eucalypt sites (two 9 year old and one 79 year old). Fuel availability, defined here as the number of days surface fuels were below 16% and dry enough to ignite and sustain fire, was calculated to estimate flammability. Fuel availability differed between sites, particularly as a function of time since fire, with recently burnt sites available to burn more often (4–17 versus 0–3 days). There were differences in fuel availability between non-eucalypt sites of the same age, suggesting that high frequency fire does not always lead to the same vegetation condition or outcome for fuel availability. This indicates there is potential for both positive and negative flammability feedbacks following state transition depending on the composition of the non-eucalypt state. This is the first study to provide empirical insight into the fuel moisture dynamics of alternative stable states in Mountain Ash forests.



Sign in / Sign up

Export Citation Format

Share Document