scholarly journals Competition, facilitation and environmental severity shape the relationship between local and regional species richness in plant communities

Ecography ◽  
2014 ◽  
Vol 38 (4) ◽  
pp. 335-345 ◽  
Author(s):  
Richard Michalet ◽  
Jean-Paul Maalouf ◽  
Philippe Choler ◽  
Bernard Clément ◽  
David Rosebery ◽  
...  
1994 ◽  
Vol 346 (1316) ◽  
pp. 185-193 ◽  

The Park Grass Experiment (PGE), begun at Rothamsted Experimental Station in 1856 and still running, affords a unique opportunity to test for the influence of species number and soil reaction on biomass variability in a suite of comparable plant communities. Biomass variability was measured by calculating the coefficient of variation ( CV ) over time of annual hay yield in an eleven-year moving window. CV and species number were both strongly negatively correlated with biomass; both relations were affected by time and pH. Multiple regression of CV on species number and mean biomass for nonacidified plots in 42 years between 1862 and 1991 showed a relationship between biomass and CV which was negative in most years and significantly so in nearly three quarters of them (30/42). We are unable to tell how much of this effect is intrinsic to the statistical relation between the mean and CV of biomass. Species number was negatively correlated with CV in 29/42 years, but this was statistically significant on only three occasions. Because this relation was highly significant in the year (1991) for which we have the largest sample size (34 plots), we tentatively conclude that biomass variability may be lower in more species-rich communities, although the effect is possibly a weak one. We suggest that physiological stresses imposed by low pH may explain the greater variability of plots with acidified soil. An increase in the variability of biomass that occurred across plots with time may be due in part to acidification across the whole experiment. Three hypotheses are proposed to explain the relationship between species richness and biomass variability: (i) biomass variability on more species-rich plots is better buffered against climatic variation because species differ in their response to climatic conditions: (ii) there are fewer species on plots with greater biomass variability because species have been lost by competitive exclusion in years when biomass reaches high values; (iii) species richness and variability are both correlated with a third variable, for example soil moisture deficit within a plot. All three hypotheses are susceptible to testing within the PGE.


2021 ◽  
Author(s):  
Luoshu He ◽  
Suhui Ma ◽  
Jiangling Zhu ◽  
Xinyu Xiong ◽  
Yangang Li ◽  
...  

Abstract Purpose The local microclimate of different slope aspects in the same area can not only impact soil environment and plant community but also affect soil microbial community. However, the relationship between aboveground plant communities and belowground soil microbial communities on various slope aspects has not been well understood.Methods We investigated the above- and belowground relationship on different slope aspects and explored how soil properties influence this relationship. Plant community attributes were evaluated by plant species richness and plant total basal area. Soil microbial community was assessed based on both 16S rRNA and ITS rRNA, using High-throughput Illumina sequencing. Results There was no significant correlation between plant richness and soil bacterial community composition on the north slope, but there was a positive correlation on the south slope and a significantly negative correlation on the flat site. There was a significantly negative correlation between soil fungal community composition and plant total basal area, which did not change with the slope aspect. In addition, there was no significant correlation between plant community species richness and soil microbial species richness.Conclusions In subalpine coniferous forests, the relationship between plant-soil bacteria varies with slope aspect, but the plant-soil fungi relationship is relatively consistent across different slope aspects. These results can improve our understanding of the relationship between plant and soil microorganisms in forest ecosystems under microtopographic changes and have important implications for the conservation of biodiversity and forest management in subalpine coniferous forests.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhenhong Wang ◽  
Alessandro Chiarucci ◽  
Juan F. Arratia

Abstract The relationship between plant productivity and species richness is one of the most debated and important issues in ecology. Ecologists have found numerous forms of this relationship and its underlying processes. However, theories and proposed drivers have been insufficient to completely explain the observed variation in the forms of this relationship. Here, we developed and validated integration models capable of combining twenty positive or negative processes affecting the relationship. The integration models generated the classic humped, asymptotic, positive, negative and irregular forms and other intermediate forms of the relationship between plant richness and productivity. These forms were linked to one another and varied according to which was considered the dependent variable. The total strengths of the different positive and negative processes are the determinants of the forms of the relationship. Positive processes, such as resource availability and species pool effects, can offset the negative effects of disturbance and competition and change the relationship. This combination method clarifies the reasons for the diverse forms of the relationship and deepens our understanding of the interactions among processes.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

Forest herb-layer vegetation responds sensitively to environmental conditions. This paper compares drivers of both taxonomic, i.e., species richness, cover and evenness, and functional herb-layer diversity, i.e., the diversity of clonal, bud bank and leaf-height-seed plant traits. We investigated the dependence of herb-layer diversity on ecological determinants related to soil properties, climatic parameters, forest stand characteristics, and topographic and abiotic and biotic factors associated with forest floor structure. The study was conducted in different forest types in Slovenia, using vegetation and environmental data from 50 monitoring plots (400 m2 each) belonging to the ICP Forests Level I and II network. The main objective was to first identify significant ecological predictors and then quantify their relative importance. Species richness was strongly determined by forest stand characteristics, such as richness of the shrub layer, tree layer shade-casting ability as a proxy for light availability and tree species composition. It showed a clear positive relation to soil pH. Variation in herb-layer cover was also best explained by forest stand characteristics and, to a lesser extent, by structural factors such as moss cover. Species evenness was associated with tree species composition, shrub layer cover and soil pH. Various ecological determinants were decisive for the diversity of below-ground traits, i.e., clonal and bud bank traits. For these two trait groups we observed a substantial climatic signal that was completely absent for taxonomy-based measures of diversity. In contrast, above-ground leaf-height-seed (LHS) traits were driven exclusively by soil reaction and nitrogen availability. In synthesis, local stand characteristics and soil properties acted as the main controlling factors for both species and trait diversity in herb-layer communities across Slovenia, confirming many previous studies. Our findings suggest that the taxonomic and functional facets of herb-layer vegetation are mainly influenced by a similar set of ecological determinants. However, their relative importance varies among individual taxonomy- and functional trait-based diversity measures. Integrating multi-faceted approaches can provide complementary information on patterns of herb-layer diversity in European forest plant communities.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124327 ◽  
Author(s):  
Silvia Mecenero ◽  
Res Altwegg ◽  
Jonathan F. Colville ◽  
Colin M. Beale

Sign in / Sign up

Export Citation Format

Share Document