scholarly journals Does local adaptation along a latitudinal cline shape plastic responses to combined thermal and nutritional stress?

Evolution ◽  
2020 ◽  
Vol 74 (9) ◽  
pp. 2073-2087
Author(s):  
Avishikta Chakraborty ◽  
Carla M. Sgrò ◽  
Christen K. Mirth
2019 ◽  
Vol 76 (6) ◽  
pp. 1404-1414
Author(s):  
L Asbjørn Vøllestad ◽  
Craig R Primmer

Abstract Linking ecology and evolution can be challenging, particularly as these fields evolve rapidly tracking technological and theoretical developments. Thus, it is important for practitioners of different biological disciplines to understand new opportunities and challenges. Since theory and methods evolve, so will research programmes—often tracking opportunity. Here, we describe a research programme where we have investigated the population biology of grayling Thymallus thymallus in a Norwegian alpine landscape over three decades. Starting with classical ecological studies, we identified a set of populations that had evolved population-specific phenotypic traits over a relatively short time span (10–30 generations). These observations led us into evolutionary studies at various levels of biological organization, using population and quantitative genetic, transcriptomic and proteomic approaches. Overall, the results show that the populations exhibit evolutionary responses to local-scale differences in environment (mainly water temperature during early development). Further, plastic responses are important in the early phase of population diversification. Population genomic studies are now becoming possible following the completion of an annotated genome. This will help us and others in addressing questions about the genetic architecture of traits important for local adaptation, thus emphasizing that combining ecological and evolutionary approaches is more important and interesting than ever.


NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 69-86
Author(s):  
Martina Muraro ◽  
Samuele Romagnoli ◽  
Benedetta Barzaghi ◽  
Mattia Falaschi ◽  
Raoul Manenti ◽  
...  

Invasive predators can strongly affect native populations. If alien predator pressure is strong enough, it can induce anti-predator responses, including phenotypic plasticity of exposed individuals and local adaptations of impacted populations. Furthermore, maternal investment is an additional pathway that could provide resources and improve performance in the presence of alien predators. We investigated the potential responses to an alien predator crayfish (Procambarus clarkii) in a threatened frog (Rana latastei) by combining field observations with laboratory measurements of embryo development rate, to assess the importance of parental investment, origin and exposure to the crayfish cues. We detected a strong variation in parental investment amongst frog populations, but this variation was not related to the invasion status of the site of origin, suggesting that mothers did not modulate parental investment in relation to the presence of alien predators. However, cues of the invasive crayfish elicited plastic responses in clutches and tadpoles development: embryos developed faster when exposed to the predator. Furthermore, embryos from invaded sites reached Gosner’s development stage 25 faster than those from non-invaded sites. This ontogenetic shift can be interpreted as a local adaptation to the alien predator and suggests that frogs are able to recognise the predatory risk. If these plastic responses and local adaptation are effective escape strategies against the invasive predator, they may improve the persistence of native frog populations.


2018 ◽  
Author(s):  
Felix M. Key ◽  
Muslihudeen A. Abdul-Aziz ◽  
Roger Mundry ◽  
Benjamin M Peter ◽  
Aarthi Sekar ◽  
...  

AbstractAmbient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabits territories under a wide range of temperatures. Focusing on cold perception – which is central to thermoregulation and survival in cold environments— we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analysed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent –precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.Author SummarySome human populations were likely under strong pressure to adapt biologically to cold climates during their colonization of non-African territories in the last 50,000 years. Such putative adaptations required genetic variation in genes that could mediate adaptive responses to cold. TRPM8 is potentially one such gene, being the only known receptor for the sensation of moderate cold temperature. We show that a likely regulatory genetic variant nearby TRPM8 has several signatures of positive selection rising its frequency in Eurasian populations during the last 25,000 years. While the genetic variant was and is rare in Africa, it is now common outside of Africa, with frequencies that strongly correlate with latitude and are highest in northern European populations. Interestingly, this same genetic variant has previously been strongly associated with migraine. This suggests that adaptation to cold has potentially contributed to the variation in migraine prevalence that exists among human groups today.


2016 ◽  
Author(s):  
Christopher D. Muir ◽  
Amy L. Angert

AbstractLocal adaptation is commonly observed in nature: organisms perform well in their natal environment, but poorly outside it. Correlations between traits and latitude, or latitudinal clines, are among the most common pieces of evidence for local adaptation, but identifying the traits under selection and the selective agents is challenging. Here, we investigated a latitudinal cline in growth and photosynthesis across 16 populations of the perennial herbErythranthe cardinalis(Phrymaceae). Using machine learning methods, we identify interannual variation in precipitation as a likely selective agent: Southern populations from more variable environments had higher photosynthetic rates and grew faster. We hypothesize that selection may favor a more annualized life history – grow now rather than save for next year – in environments where severe droughts occur more often. Thus our study provides insight into how species may adapt if Mediterranean climates become more variable due to climate change.


Author(s):  
Maria Y. Sachkova ◽  
Jason Macrander ◽  
Joachim M. Surm ◽  
Reuven Aharoni ◽  
Shelcie S. Menard-Harvey ◽  
...  

AbstractNematostella vectensis is a sea anemone (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, which may be metabolically expensive. In this study, we challenged Nematostella polyps with heat, salinity, UV light stressors and a combination of all three to determine how abiotic stressors impact toxin expression for individuals collected across this species’ range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce suggesting that downregulating venom expression under stressful conditions may be advantageous. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate venom production levels differently in a pattern reflecting local adaptation.


2020 ◽  
Author(s):  
Sonali Sachin Ranade ◽  
María Rosario García-Gil

AbstractStudy of natural variation is an efficient method to elucidate how plants adapt to local climatic conditions, a key process for the evolution of a species. However, it is challenging to determine the genetic basis of adaptive variation especially in forest trees which have large and complex genomes. Norway spruce is a shade tolerant conifer in which the requirement of far-red light for growth increases latitudinally northwards. In the current work, hypocotyl-length followed a latitudinal cline in response to SHADE (low red:far-red ratio). RNA-sequencing revealed differential gene expression in response to SHADE, between a southern and a northern natural population in Sweden. Exome capture included analysis of uniquely large data set (1654 trees) that revealed missense variations in coding regions of nine differentially expressed candidate genes, which followed a latitudinal cline in allele and genotype frequencies. These genes included five transcription factors involved in vital processes like bud-set/bud-flush, lignin pathway and cold acclimation, and other genes that take part in cell-wall remodeling, secondary cell-wall thickening, response to starvation and immunity. Findings from this work primarily suggests that the northern populations of Norway spruce are better adapted towards disease resistance under shade by up-regulation of lignin pathway that is linked to immunity and it forms concrete basis for local adaptation to light quality in Norway spruce, one of the most economically important conifer tree species in Sweden.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. e1007298 ◽  
Author(s):  
Felix M. Key ◽  
Muslihudeen A. Abdul-Aziz ◽  
Roger Mundry ◽  
Benjamin M. Peter ◽  
Aarthi Sekar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document