scholarly journals The C‐terminal domain of HpDprA is a DNA‐binding winged helix domain that does not bind double‐stranded DNA

FEBS Journal ◽  
2019 ◽  
Vol 286 (10) ◽  
pp. 1941-1958
Author(s):  
Johnny Lisboa ◽  
Louisa Celma ◽  
Dyana Sanchez ◽  
Mathilde Marquis ◽  
Jessica Andreani ◽  
...  
2003 ◽  
Vol 185 (14) ◽  
pp. 4087-4098 ◽  
Author(s):  
Sangita C. Sinha ◽  
Joseph Krahn ◽  
Byung Sik Shin ◽  
Diana R. Tomchick ◽  
Howard Zalkin ◽  
...  

ABSTRACT The purine repressor from Bacillus subtilis, PurR, represses transcription from a number of genes with functions in the synthesis, transport, and metabolism of purines. The 2.2-Å crystal structure of PurR reveals a two-domain protein organized as a dimer. The larger C-terminal domain belongs to the PRT structural family, in accord with a sequence motif for binding the inducer phosphoribosylpyrophosphate (PRPP). The PRT domain is fused to a smaller N-terminal domain that belongs to the winged-helix family of DNA binding proteins. A positively charged surface on the winged-helix domain likely binds specific DNA sequences in the recognition site. A second positively charged surface surrounds the PRPP site at the opposite end of the PurR dimer. Conserved amino acids in the sequences of PurR homologs in 21 gram-positive bacteria cluster on the proposed recognition surface of the winged-helix domain and around the PRPP binding site at the opposite end of the molecule, supporting a common function of DNA and PRPP binding for all of the proteins. The structure supports a binding mechanism in which extended regions of DNA interact with extensive protein surface. Unlike most PRT proteins, which are phosphoribosyltransferases (PRTases), PurR lacks catalytic activity. This is explained by a tyrosine side chain that blocks the site for a nucleophile cosubstrate in PRTases. Thus, B. subtilis has adapted an enzyme fold to serve as an effector-binding domain and has used it in a novel combination with the DNA-binding winged-helix domain as a repressor of purine genes.


2006 ◽  
Vol 281 (26) ◽  
pp. 18208-18215 ◽  
Author(s):  
Sandrine Caputo ◽  
Joël Couprie ◽  
Isabelle Duband-Goulet ◽  
Emilie Kondé ◽  
Feng Lin ◽  
...  

DNA Repair ◽  
2017 ◽  
Vol 57 ◽  
pp. 125-132 ◽  
Author(s):  
Sarah J. Northall ◽  
Ryan Buckley ◽  
Nathan Jones ◽  
J. Carlos Penedo ◽  
Panos Soultanas ◽  
...  

2014 ◽  
Vol 289 (21) ◽  
pp. 14682-14691 ◽  
Author(s):  
Hem Moktan ◽  
Michel F. Guiraldelli ◽  
Craig A. Eyster ◽  
Weixing Zhao ◽  
Chih-Ying Lee ◽  
...  

2017 ◽  
Vol 199 (17) ◽  
Author(s):  
Maxime Leroux ◽  
Niketa Jani ◽  
Steven J. Sandler

ABSTRACT The ability to restart broken DNA replication forks is essential across all domains of life. In Escherichia coli, the priA, priB, priC, and dnaT genes encode the replication restart proteins (RRPs) to accomplish this task. PriA plays a critical role in replication restart such that its absence reveals a dramatic phenotype: poor growth, high basal levels of SOS expression, poorly partitioned nucleoids (Par−), UV sensitivity, and recombination deficiency (Rec−). PriA has 733 amino acids, and its structure is composed of six domains that enable it to bind to DNA replication fork-like structures, remodel the strands of DNA, interact with SSB (single-stranded DNA binding protein), PriB, and DnaT, and display ATPase, helicase, and translocase activities. We have characterized a new priA mutation called priA316::cat. It is a composite mutation involving an insertion that truncates the protein within the winged-helix domain (at the 154th codon) and an ACG (Thr)-to-ATG (Met) mutation that allows reinitiation of translation at the 157th codon such that PriA is expressed in two pieces. priA316::cat phenotypes are like those of the wild type for growth, recombination, and UV resistance, revealing only a slightly increased level of SOS expression and defects in nucleoid partitioning in the mutant. Both parts of PriA are required for activity, and the N-terminal fragment can be optimized to yield wild-type activity. A deletion of the lon protease suppresses priA316::cat phenotypes. We hypothesize the two parts of PriA form a complex that supplies most of the PriA activity needed in the cell. IMPORTANCE PriA is a highly conserved multifunctional protein that plays a crucial role in the essential process of replication restart. Here we characterize an insertion mutation of priA with an intragenic suppressor such that it is now made in two parts. These two pieces split the winged-helix domain to separate the N-terminal 3′ DNA-binding domain from the C-terminal domain of PriA. It is hypothesized that the two pieces form a complex that is capable of almost wild type priA function. The composite mutation leads to a moderate level of SOS expression and defects in partitioning of the chromosomes. Full function is restored by deletion of lon, suggesting that stability of this complex may be a reason for the partial phenotypes seen.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiaxuan Cheng ◽  
Ningning Li ◽  
Xiaohan Wang ◽  
Jiazhi Hu ◽  
Yuanliang Zhai ◽  
...  

AbstractThe function of the origin recognition complex (ORC) in DNA replication is highly conserved in recognizing and marking the initiation sites. The detailed molecular mechanisms by which human ORC is reconfigured into a state competent for origin association remain largely unknown. Here, we present structural characterizations of human ORC1–5 and ORC2–5 assemblies. ORC2–5 exhibits a tightly autoinhibited conformation with the winged-helix domain of ORC2 completely blocking the central DNA-binding channel. The binding of ORC1 partially relieves the autoinhibitory effect of ORC2–5 through remodeling ORC2-WHD, which makes ORC2-WHD away from the central channel creating a still autoinhibited but more dynamic structure. In particular, the AAA+ domain of ORC1 is highly flexible to sample a variety of conformations from inactive to potentially active states. These results provide insights into the detailed mechanisms regulating the autoinhibition of human ORC and its subsequent activation for DNA binding.


2016 ◽  
Vol 44 (11) ◽  
pp. 5083-5094 ◽  
Author(s):  
Kuo Zhang ◽  
Yuan Gao ◽  
Jingjing Li ◽  
Rebecca Burgess ◽  
Junhong Han ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiang Feng ◽  
Yasunori Noguchi ◽  
Marta Barbon ◽  
Bruce Stillman ◽  
Christian Speck ◽  
...  

AbstractThe Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins.


2006 ◽  
Vol 281 (50) ◽  
pp. 38966
Author(s):  
Takashi Kinebuchi ◽  
Wataru Kagawa ◽  
Hitoshi Kurumizaka ◽  
Shigeyuki Yokoyama
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document