Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest

2017 ◽  
Vol 23 (8) ◽  
pp. 3154-3168 ◽  
Author(s):  
István Fekete ◽  
Kate Lajtha ◽  
Zsolt Kotroczó ◽  
Gábor Várbíró ◽  
Csaba Varga ◽  
...  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xavier Morin ◽  
Lorenz Fahse ◽  
Hervé Jactel ◽  
Michael Scherer-Lorenzen ◽  
Raúl García-Valdés ◽  
...  

2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Dixi Modi ◽  
Suzanne Simard ◽  
Jean Bérubé ◽  
Les Lavkulich ◽  
Richard Hamelin ◽  
...  

ABSTRACT Stump removal is a common forest management practice used to reduce the mortality of trees affected by the fungal pathogen-mediated root disease, Armillaria root rot, but the impact of stumping on soil fungal community structure is not well understood. This study analyzed the long-term impact of stumping and tree species composition on the abundance, diversity and taxonomic composition of soil fungal communities using internal transcribed spacer (ITS) marker-based DNA metabarcoding in a 48-year-old trial at Skimikin, British Columbia. A total of 108 samples were collected from FH (fermented and humus layers), and soil mineral horizons (A and B) from stumped and unstumped plots of six tree species treatments (pure stands and admixtures of Douglas-fir, western red-cedar and paper birch). Fungal α-diversity in the A horizon significantly increased with stumping regardless of tree species composition, while β-diversity was significantly affected by stumping in all the horizons. We also observed that the relative abundance of the saprotrophic fungal community declined while that of the ectomycorrhizal fungal community increased with stumping. In conclusion, increase in ectomycorrhizal fungal associations, which are positively associated with tree productivity, suggests that stumping can be considered a good management practice for mitigating root disease and promoting tree regeneration.


2019 ◽  
Vol 89 (2) ◽  
pp. e01345 ◽  
Author(s):  
George Van Houtven ◽  
Jennifer Phelan ◽  
Christopher Clark ◽  
Robert D. Sabo ◽  
John Buckley ◽  
...  

2015 ◽  
Vol 45 (9) ◽  
pp. 1215-1224 ◽  
Author(s):  
Per-Ola Hedwall ◽  
Grzegorz Mikusiński

Protected forest areas (PFAs) are key features of biodiversity conservation, and knowledge about long-term development is crucial in evaluating their efficiency and management needs. Longitudinal data on forest structure in PFAs is uncommon and often from small areas. Here we use data from the Swedish National Forest Inventory to study changes in more than 750 000 ha of PFAs over 60 years. Structures important for biodiversity, e.g., number of large trees and the volume of hard deadwood, including both standing and down wood, have more than doubled. The initial volume of deadwood, however, was very low. The overall tree species composition was stable over time, and only among the largest trees were there indications of a shift towards the late successional Norway spruce (Picea abies (L.) Karst.). Deadwood increased independent of species, size of wood, and site characteristics. This increase was positively related to the volume of living trees and forest age. We conclude that Swedish PFAs, in the absence of active management and under fire suppression at the landscape scale, develop structural components that are crucial for conservation of biodiversity. However, although tree species composition appears stable, present disturbance regimes in the PFAs are considerably different from those in naturally dynamic forests, which may have implications for long-term biodiversity maintenance.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1116 ◽  
Author(s):  
Mark B. Burnham ◽  
Martin J. Christ ◽  
Mary Beth Adams ◽  
William T. Peterjohn

Many factors govern the flow of deposited nitrogen (N) through forest ecosystems and into stream water. At the Fernow Experimental Forest in WV, stream water nitrate (NO3−) export from a long-term reference watershed (WS 4) increased in approximately 1980 and has remained elevated despite more recent reductions in chronic N deposition. Long-term changes in species composition may have altered forest N demand and the retention of deposited N. In particular, the abundance and importance value of Acer saccharum have increased since the 1950s, and this species is thought to have a low affinity for NO3−. We measured the relative uptake of NO3− and ammonium (NH4+) by six important temperate broadleaf tree species and estimated stand uptake of total N, NO3−, and NH4+. We then used records of stream water NO3− and stand composition to evaluate the potential impact of changes in species composition on NO3− export. Surprisingly, the tree species we examined all used both mineral N forms approximately equally. Overall, the total N taken up by the stand into aboveground tissues increased from 1959 through 2001 (30.9 to 35.2 kg N ha−1 yr−1). However, changes in species composition may have altered the net supply of NO3− in the soil since A. saccharum is associated with high nitrification rates. Increases in A. saccharum importance value could result in an increase of 3.9 kg NO3−-N ha−1 yr−1 produced via nitrification. Thus, shifting forest species composition resulted in partially offsetting changes in NO3− supply and demand, with a small net increase of 1.2 kg N ha−1 yr−1 in NO3− available for leaching. Given the persistence of high stream water NO3− export and relatively abrupt (~9 year) change in stream water NO3− concentration circa 1980, patterns of NO3− export appear to be driven by long-term deposition with a lag in the recovery of stream water NO3− after more recent declines in atmospheric N input.


2009 ◽  
Vol 39 (2) ◽  
pp. 330-341 ◽  
Author(s):  
Eric S. Fabio ◽  
Mary A. Arthur ◽  
Charles C. Rhoades

Understanding how natural factors interact across the landscape to influence nitrogen (N) cycling is an important focus in temperate forests because of the great inherent variability in these forests. Site-specific attributes, including local topography, soils, and vegetation, can exert important controls on N processes and retention. Seasonal monitoring of N cycling dynamics was carried out for 2 years in deciduous forest stands that differed in soil moisture status and geologic substrate, and thus, in tree species composition to determine the effects of tree species composition, mediated by moisture and soil chemistry, on N cycling. Geologic substrate influenced soil and soil leachate chemistry but did not appear to affect N cycling in the upper 10 cm. Moisture status was strongly correlated with tree species composition, which was significantly related to N cycling parameters. Sugar maple was associated with high net nitrification rates and soil solution NO3 concentrations, whereas in oak stands nitrification was low and soil solution NO3 was at or near detection limits. Tree species composition in the understory suggests that sugar maple may be increasing in mesic sites and that oak regeneration in all sites is very limited, and a shift in species composition could result in changes to N retention and export.


Sign in / Sign up

Export Citation Format

Share Document