scholarly journals Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast

2017 ◽  
Vol 22 (6) ◽  
pp. 591-601 ◽  
Author(s):  
Mitsuhiro Okada ◽  
Shunta Kusunoki ◽  
Yuko Ishibashi ◽  
Keiji Kito
2005 ◽  
Vol 168 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Félix Machín ◽  
Jordi Torres-Rosell ◽  
Adam Jarmuz ◽  
Luis Aragón

Mitotic cell division involves the equal segregation of all chromosomes during anaphase. The presence of ribosomal DNA (rDNA) repeats on the right arm of chromosome XII makes it the longest in the budding yeast genome. Previously, we identified a stage during yeast anaphase when rDNA is stretched across the mother and daughter cells. Here, we show that resolution of sister rDNAs is achieved by unzipping of the locus from its centromere-proximal to centromere-distal regions. We then demonstrate that during this stretched stage sister rDNA arrays are neither compacted nor segregated despite being largely resolved from each other. Surprisingly, we find that rDNA segregation after this period no longer requires spindles but instead involves Cdc14-dependent rDNA axial compaction. These results demonstrate that chromosome resolution is not simply a consequence of compacting chromosome arms and that overall rDNA compaction is necessary to mediate the segregation of the long arm of chromosome XII.


2006 ◽  
Vol 26 (17) ◽  
pp. 6675-6689 ◽  
Author(s):  
Judith Lopes ◽  
Cyril Ribeyre ◽  
Alain Nicolas

ABSTRACT Genomes contain tandem repeat blocks that are at risk of expansion or contraction. The mechanisms of destabilization of the human minisatellite CEB1 (arrays of 36- to 43-bp repeats) were investigated in a previously developed model system, in which CEB1-0.6 (14 repeats) and CEB1-1.8 (42 repeats) alleles were inserted into the genome of Saccharomyces cerevisiae. As in human cells, CEB1 is stable in mitotically growing yeast cells but is frequently rearranged in the absence of the Rad27/hFEN1 protein involved in Okazaki fragments maturation. To gain insight into this mode of destabilization, the CEB1-1.8 and CEB1-0.6 human alleles and 47 rearrangements derived from a CEB1-1.8 progenitor in rad27Δ cells were sequenced. A high degree of polymorphism of CEB1 internal repeats was observed, attesting to a large variety of homology-driven rearrangements. Simple deletion, double deletion, and highly complex events were observed. Pedigree analysis showed that all rearrangements, even the most complex, occurred in a single generation and were inherited equally by mother and daughter cells. Finally, the rearrangement frequency was found to increase with array size, and partial complementation of the rad27Δ mutation by hFEN1 demonstrated that the production of novel CEB1 alleles is Rad52 and Rad51 dependent. Instability can be explained by an accumulation of unresolved flap structures during replication, leading to the formation of recombinogenic lesions and faulty repair, best understood by homology-dependent synthesis-strand displacement and annealing.


2019 ◽  
Vol 20 (3) ◽  
pp. 460 ◽  
Author(s):  
Michèle Reindl ◽  
Sebastian Hänsch ◽  
Stefanie Weidtkamp-Peters ◽  
Kerstin Schipper

Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.


2014 ◽  
Vol 13 (5) ◽  
pp. 635-647 ◽  
Author(s):  
Yang-Nim Park ◽  
Xiaohong Zhao ◽  
Yang-In Yim ◽  
Horia Todor ◽  
Robyn Ellerbrock ◽  
...  

ABSTRACT The [ PSI + ] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [ PSI + ], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [ PSI + ]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [ PSI + ] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [ PSI + ] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531 ◽  
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56665 ◽  
Author(s):  
Wing-Cheong Lo ◽  
Mid Eum Lee ◽  
Monisha Narayan ◽  
Ching-Shan Chou ◽  
Hay-Oak Park

2009 ◽  
Vol 186 (4) ◽  
pp. 541-554 ◽  
Author(s):  
Andrei Fagarasanu ◽  
Fred D. Mast ◽  
Barbara Knoblach ◽  
Yui Jin ◽  
Matthew J. Brunner ◽  
...  

In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycle–dependent and peroxisome partitioning–dependent mechanisms of Inp2p regulation. We find that although total Inp2p levels oscillate with the cell cycle, Inp2p levels on individual peroxisomes are controlled by peroxisome inheritance, as Inp2p aberrantly accumulates and decorates all peroxisomes in mother cells when peroxisome partitioning is abolished. We also find that Inp2p is a phosphoprotein whose level of phosphorylation is coupled to the cell cycle irrespective of peroxisome positioning in the cell. Our findings demonstrate that both organelle positioning and cell cycle progression control the levels of organelle-specific receptors for molecular motors to ultimately achieve an equidistribution of compartments between mother and daughter cells.


2001 ◽  
Vol 12 (9) ◽  
pp. 2800-2812 ◽  
Author(s):  
Douglas A. Thrower ◽  
Kerry Bloom

We have used mitotic spindle forces to examine the role of Sir2 and Ku in chromatin compaction. Escherichia coli lac operator DNA was placed between two centromeres on a conditional dicentric chromosome in budding yeast cells and made visible by expression of a lac repressor–green fluorescent fusion protein. Centromeres on the same chromatid of a dicentric chromosome attach to opposite poles ∼50% of the time, resulting in chromosome bridges during anaphase. In cells deleted for yKU70,yKU80, or SIR2, a 10-kb region of the dicentric chromosome stretched along the spindle axis to a length of 6 μm during anaphase. On spindle disassembly, stretched chromatin recoiled to the bud neck and was partitioned to mother and daughter cells after cytokinesis and cell separation. Chromatin immunoprecipitation revealed that Sir2 localizes to the lacO region in response to activation of the dicentric chromosome. These findings indicate that Ku and Sir proteins are required for proper chromatin compaction within regions of a chromosome experiencing tension or DNA damage. The association of Sir2 with the affected region suggests a direct role in this process, which may include the formation of heterochromatic DNA.


Sign in / Sign up

Export Citation Format

Share Document