scholarly journals Effects of mesenchymal stromal cells on motor function and collagen in the skeletal muscles of rats with type I diabetes

2019 ◽  
Vol 100 (5-6) ◽  
pp. 359-368
Author(s):  
Genoveva L. F. Luna ◽  
Thiago L. Russo ◽  
Maria A. Sabadine ◽  
Yisel C. Estrada‐Bonilla ◽  
Ana L. M. Andrade ◽  
...  
2020 ◽  
Vol 23 (12) ◽  
pp. 870-879
Author(s):  
Kosar Mohamed Ali ◽  
Fattah Hama Rahim Fattah ◽  
Shirwan Hamasalh Omar ◽  
Mohammed I M Gubari ◽  
Mahmoud Yousefifard ◽  
...  

Background: A definitive conclusion on the efficacy of mesenchymal stromal cells-derived conditioned medium (MSCs-CM) in pulmonary fibrosis has not yet been reached. Therefore, the present meta-analysis intends to investigate the efficacy of MSCs-CM administration on improvement of pulmonary fibrosis. Methods: An extensive search was performed on the Medline, Embase, Scopus and Web of Science databases by the end of August 2019. Outcomes in the present study included pulmonary fibrosis score, lung collagen deposition, lung collagen expression, transforming growth factor β1 (TGF-β1) expression and interleukin-6 expression. Finally, the data were pooled and an overall standardized mean difference (SMD) with a 95% confidence interval (CI) was reported. Results: Data from seven studies were included. Analyses showed that administration of MSCs-CM significantly improved pulmonary fibrosis (SMD = -2.36; 95% CI: -3.21, -1.51). MSCs-CM administration also attenuated lung collagen deposition (SMD = -1.70; 95% CI: -2.18, -1.23) and decreased expression of type I collagen (SMD = -6.27; 95% CI: -11.00, -1.55), type III collagen (SMD = -5.16; 95% CI: -9.86, -0.47), TGF- β1 (SMD = -3.36; 95% CI: - 5.62, -1.09) and interleukin-6 (SMD = -1.69; 95% CI: - 3.14, -0.24). Conclusion: The present meta-analysis showed that administration of MSCs-CM improves pulmonary fibrosis. It seems that the effect of MSCs-CM was mediated by reducing collagen deposition as well as inhibiting the production of inflammatory chemokines such as TGF-β1 and interleukin 6 (IL-6). Since there is no evidence on the efficacy of MSCs-CM in large animals, further studies are needed to translate the finding to clinical studies.


Author(s):  
G. T. Sukhikh ◽  
A. V. Degtyareva ◽  
D. N. Silachev ◽  
K. V. Gorunov ◽  
I. V. Dubrovina ◽  
...  

The article presents the results of intravenous transplantation of allogeneic multipotent mesenchymal stromal cells, derived from a human umbilical cord, to a child with Crigler–Najjarsyndrome type I during the first 2 years of life. The therapy is aimed at reduction of the duration of phototherapy while maintaining a safe level of serum bilirubin.In this study, a five-day-old child with the bilirubin level of 340 µmol/l was treated with phototherapy for 16–18 hours daily in the neonatal period. Then, phototherapy was reduced to 14–16 hours. The level of bilirubin varied from 329 to 407 μmol/l. At the age of 2 months, it was decided to use multipotent mesenchymal stromal cells with a significant decrease in the duration of phototherapy up to 2 hours a day. During the observation period (2 years at the time of writing this article) the child received 6 injections of multipotent mesenchymal stromal cells. A positive effect developed within 4–7 days after administration and persisted for 2–3 months. There were no side effects or complications during and after transplantation.Thus, intravenous transplantation of multipotent mesenchymal stromal cells is an effective treatment of Crigler–Najjar syndrome type I; it reducesthe need for phototherapy,significantly improvesthe quality of life of the patients and prolongstheir life with native liver. 


2012 ◽  
Vol 91 (12) ◽  
pp. 1135-1140 ◽  
Author(s):  
I.S. Kim ◽  
Y.M. Song ◽  
B. Lee ◽  
S.J. Hwang

Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.


2006 ◽  
Vol 1 (4) ◽  
pp. 530-544 ◽  
Author(s):  
Alexander Shpakov ◽  
Ludmila Kuznetsova ◽  
Svetlana Plesneva ◽  
Alexander Kolychev ◽  
Vera Bondareva ◽  
...  

AbstractFunctional disturbance in the novel adenylyl cyclase signaling mechanism (ACSM) of insulin and relaxin action in rat streptozotocin (STZ) type I diabetes was studied on the basis of the authors’ conception of molecular defects in hormonal signaling systems as the main causes of endocrine diseases. Studying the functional state of molecular components of the ACSM and the mechanism as a whole, the following changes were found in the skeletal muscles of diabetic rats compared with control animals: 1) increase of insulin receptor binding due to an increase in the number of insulin binding sites with high and low affinity; 2) increase of the basal adenylyl cyclase (AC) activity and the reduction of AC-activating effect of non-hormonal agents (guanine nucleotides, sodium fluoride, forskolin); 3) reduction of ACSM response to stimulatory action of insulin and relaxin; 4) decrease of the insulin-activating effect on the key enzymes of carbohydrate metabolism, glycogen synthase and glucose-6-phosphate dehydrogenase. Hence, the functional activity of GTP-binding protein of stimulatory type, AC and their functional coupling are decreased during experimental type 1 diabetes that leads to the impairment of the transduction of insulin and relaxin signals via ACSM.


Cytotherapy ◽  
2011 ◽  
Vol 13 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Zhong Li ◽  
Hong-Ying Liu ◽  
Qing-Feng Lei ◽  
Cheng Zhang ◽  
Shu-Nong Li

Oncogene ◽  
2016 ◽  
Vol 35 (46) ◽  
pp. 5953-5962 ◽  
Author(s):  
P Shou ◽  
Q Chen ◽  
J Jiang ◽  
C Xu ◽  
J Zhang ◽  
...  

2019 ◽  
Vol 54 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Melissa Vanover ◽  
Christopher Pivetti ◽  
Lee Lankford ◽  
Priyadarsini Kumar ◽  
Laura Galganski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document