scholarly journals Mesenchymal Stromal Cells Derived Conditioned Medium in Pulmonary Fibrosis: A Systematic Review and Meta-analysis

2020 ◽  
Vol 23 (12) ◽  
pp. 870-879
Author(s):  
Kosar Mohamed Ali ◽  
Fattah Hama Rahim Fattah ◽  
Shirwan Hamasalh Omar ◽  
Mohammed I M Gubari ◽  
Mahmoud Yousefifard ◽  
...  

Background: A definitive conclusion on the efficacy of mesenchymal stromal cells-derived conditioned medium (MSCs-CM) in pulmonary fibrosis has not yet been reached. Therefore, the present meta-analysis intends to investigate the efficacy of MSCs-CM administration on improvement of pulmonary fibrosis. Methods: An extensive search was performed on the Medline, Embase, Scopus and Web of Science databases by the end of August 2019. Outcomes in the present study included pulmonary fibrosis score, lung collagen deposition, lung collagen expression, transforming growth factor β1 (TGF-β1) expression and interleukin-6 expression. Finally, the data were pooled and an overall standardized mean difference (SMD) with a 95% confidence interval (CI) was reported. Results: Data from seven studies were included. Analyses showed that administration of MSCs-CM significantly improved pulmonary fibrosis (SMD = -2.36; 95% CI: -3.21, -1.51). MSCs-CM administration also attenuated lung collagen deposition (SMD = -1.70; 95% CI: -2.18, -1.23) and decreased expression of type I collagen (SMD = -6.27; 95% CI: -11.00, -1.55), type III collagen (SMD = -5.16; 95% CI: -9.86, -0.47), TGF- β1 (SMD = -3.36; 95% CI: - 5.62, -1.09) and interleukin-6 (SMD = -1.69; 95% CI: - 3.14, -0.24). Conclusion: The present meta-analysis showed that administration of MSCs-CM improves pulmonary fibrosis. It seems that the effect of MSCs-CM was mediated by reducing collagen deposition as well as inhibiting the production of inflammatory chemokines such as TGF-β1 and interleukin 6 (IL-6). Since there is no evidence on the efficacy of MSCs-CM in large animals, further studies are needed to translate the finding to clinical studies.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
H. Jessen ◽  
N. Hoyer ◽  
T. S. Prior ◽  
P. Frederiksen ◽  
M. A. Karsdal ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of fibrillar collagens in the alveolar space resulting in reduced pulmonary function and a high mortality rate. Biomarkers measuring the turnover of type I and III collagen could provide valuable information for prognosis and treatment decisions in IPF. Methods Serological biomarkers reflecting the formation of type III collagen (PRO-C3) and degradation of type I (C1M) and III collagen (C3M) were evaluated in a real-world cohort of 178 newly diagnosed IPF patients. Blood samples and clinical data were collected at baseline, six, and 12 months. Baseline and longitudinal biomarker levels were related to disease progression of IPF (defined as ≥ 5% decline in forced vital capacity (FVC) and/or ≥ 10% decline in diffusing capacity for carbon monoxide (DLco) and/or all-cause mortality at 12 months). Furthermore, we analysed differences in percentage change of biomarker levels from baseline between patients receiving antifibrotic treatment or not. Results Increased baseline levels of type I and III collagen turnover biomarkers were associated with a greater risk of disease progression within 12 months compared to patients with a low baseline type I and III collagen turnover. Patients with progressive disease had higher serum levels of C1M (P = 0.038) and PRO-C3 (P = 0.0022) compared to those with stable disease over one year. There were no differences in biomarker levels between patients receiving pirfenidone, nintedanib, or no antifibrotics. Conclusion Baseline levels of type I and III collagen turnover were associated with disease progression within 12 months in a real-world cohort of IPF patients. Longitudinal biomarker levels of type I and III collagen turnover were related to progressive disease. Moreover, antifibrotic therapy did not affect type I and III collagen turnover biomarkers in these patients. PRO-C3 and C1M may be potential biomarkers for a progressive disease behavior in IPF.


2021 ◽  
Vol 66 (4) ◽  
pp. 5-12
Author(s):  
A. Rastorgueva ◽  
T. Astrelina ◽  
V. Brunchukov ◽  
D. Usupzhanova ◽  
I. Kobzeva ◽  
...  

Background: To compare the results of the use of mesenchymal stromal cells (MSCs) of human gingival mucosa and MSCs of rat gingival mucosa, their conditioned media, and to evaluate their effect on tissue regeneration in local radiation injury (LRI). Material and methods: The study included 120 white male Wistar rats weighing 210 ± 30 g at the age of 8–12 weeks, randomized into 6 groups (20 animals each): control (C), animals did not receive therapy; control with the introduction of culture medium concentrate (CM) three times for 1, 14, 21 days; administration of human gingival mucosa MSCs (HM) at a dose of 2 million per 1 kg three times for 1, 14, 21 days; administration of human gingival mucosa MSCS conditioned medium concentrate (HMCM) at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCs (RM) at a dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCS (RMCM) conditioned medium concentrate at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days. Each laboratory animal was observed 17 times: on 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112 day after the burn simulation. Histological (hematoxylin-eosin staining) and immunohistochemical (CD31, CD68, VEGF, PGP 9.5, MMP2,9, Collag 1, TIMP 2) studies were performed. LRI was modeled on an X-ray machine at a dose of 110 Gy. MSCs were cultured according to the standard method up to 3–5 passages, the conditioned medium was taken and concentrated 10 times. The immunophenotype of MSCs (CD34, CD45, CD90, CD105, CD73, HLA-DR) and viability (7‑ADD) were determined by flow cytofluorimetry. Results: In a comparative analysis with the control group (C), starting from the 42nd day of the study, a tendency to reduce the area of skin ulcers in animals in all groups was observed, despite the fact that not all days had statistically significant differences. On day 112th, complete healing of skin ulcers in the CM group was observed in 40 % of animals in the HM group – in 60 %, in the HMCM group – in 20 % of animals, in the RMCM group–20 %, and in the C and RM groups there were no animals with a prolonged wound defect. Positive expression of the VEGF marker was observed in groups C and CM on the 28th day and in experimental groups (HM, HMCM, RM, RMCM) on the 112th day. A statistically significant increase in the CD68 marker was observed in groups C, RM, and RMCM, while the remaining groups showed a decrease in the number of macrophages.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun Takao ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.


Author(s):  
G. T. Sukhikh ◽  
A. V. Degtyareva ◽  
D. N. Silachev ◽  
K. V. Gorunov ◽  
I. V. Dubrovina ◽  
...  

The article presents the results of intravenous transplantation of allogeneic multipotent mesenchymal stromal cells, derived from a human umbilical cord, to a child with Crigler–Najjarsyndrome type I during the first 2 years of life. The therapy is aimed at reduction of the duration of phototherapy while maintaining a safe level of serum bilirubin.In this study, a five-day-old child with the bilirubin level of 340 µmol/l was treated with phototherapy for 16–18 hours daily in the neonatal period. Then, phototherapy was reduced to 14–16 hours. The level of bilirubin varied from 329 to 407 μmol/l. At the age of 2 months, it was decided to use multipotent mesenchymal stromal cells with a significant decrease in the duration of phototherapy up to 2 hours a day. During the observation period (2 years at the time of writing this article) the child received 6 injections of multipotent mesenchymal stromal cells. A positive effect developed within 4–7 days after administration and persisted for 2–3 months. There were no side effects or complications during and after transplantation.Thus, intravenous transplantation of multipotent mesenchymal stromal cells is an effective treatment of Crigler–Najjar syndrome type I; it reducesthe need for phototherapy,significantly improvesthe quality of life of the patients and prolongstheir life with native liver. 


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Kate Xie* ◽  
Quynh Vu* ◽  
Mark Eckert ◽  
Weian Zhao ◽  
Steven C Cramer

INTRODUCTION: Mesenchymal stromal cells (MSC) are multipotent cells that support numerous restorative processes after stroke. The ease of isolation and immunoprivileged status of MSC have stimulated numerous preclinical stroke studies. We performed a meta-analysis to estimate study quality, size of behavioral effects, and the impact of variables such as timing of MSC administration in relation to stroke onset. METHODS: Studies of MSC and stroke were identified through PubMed and Web of Science. Studies of hemorrhage, not in English, or using modified MSC were excluded. A Quality Score was determined for each study, estimating methodological quality using 10 criteria derived from STAIR guidelines, with higher Quality Scores reflecting greater compliance with issues such as randomization and outcome blinding. Outcome data extracted for MSC and control arms were used to derive estimates of effect size using Cohen’s d. RESULTS: A total of 46 studies met criteria, with 39 studying rats, 6 mice, and 1 primates. There were 61 treatment groups, as some studies had >1 independent MSC treatment arms; MSC were introduced intravenously in 41, intracerebrally in 15, and intraarterially in 6. MSC source was rat in 24, human in 16, and mouse in 6. Time of MSC administration ranged from 5 weeks pre- to 1 month post-stroke. MSC dose ranged from 1x10^4 to 3.25x10^7. The median Quality Score was 6 (IQR 5-7). Quality Score was not related to time of MSC administration relative to stroke or to behavioral effect size. Median effect size was 2.05 for the Modified Neurological Severity Scale (n=23), 1.88 for Adhesive Removal Test (n=19), and 2.70 for the Rotarod Test (n=14). Effect sizes were substantial across all routes of administration and differed only for the mNSS (p<0.04), favoring the IC route. Effect size did not vary with time of MSC administration relative to stroke for any behavioral measure. CONCLUSIONS: The quality of preclinical MSC stroke studies has generally been good. MSC consistently provide very large behavioral benefits, across scales and routes of administration. The magnitude of behavioral effects was not related to the Quality Score or to the time of MSC administration relative to stroke. These findings support translation of MSC to human trials.


2019 ◽  
Vol 100 (5-6) ◽  
pp. 359-368
Author(s):  
Genoveva L. F. Luna ◽  
Thiago L. Russo ◽  
Maria A. Sabadine ◽  
Yisel C. Estrada‐Bonilla ◽  
Ana L. M. Andrade ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Luciana Souza-Moreira ◽  
Vinicius Cardoso Soares ◽  
Suelen da Silva Gomes Dias ◽  
Patricia T. Bozza

AbstractMesenchymal stromal cells (MSCs) are a potential therapy for many chronic inflammatory diseases due to their regenerative, immunologic and anti-inflammatory properties. The two-way dialogue between MSCs and macrophages is crucial to tissue regeneration and repair. Previous research demonstrated that murine adipose-derived MSC conditioned medium (ASCcm) reprograms macrophages to an M2-like phenotype which protects from experimental colitis and sepsis. Here, our focus was to determine the molecular mechanism of lipid droplet biogenesis in macrophages re-educated using ASCcm. Adipose-derived MSC conditioned medium promotes phosphorylation of AKT/mTOR pathway proteins in macrophages. Furthermore, increased expression of PPARγ, lipid droplet biogenesis and PGE2 synthesis were observed in M2-like phenotype macrophages (high expression of arginase 1 and elevated IL-10). Treatment with mTOR inhibitor rapamycin or PPARγ inhibitor GW9662 suppressed lipid droplets and PGE2 secretion. However, these inhibitors had no effect on arginase-1 expression. Rapamycin, but not GW9662, inhibit IL-10 secretion. In conclusion, we demonstrate major effects of ASCcm to reprogram macrophage immunometabolism through mTOR and PPARγ dependent and independent pathways.


Sign in / Sign up

Export Citation Format

Share Document