Effects of Thermal Processing on Antioxidant Activities, Amino Acid Composition and Protein Molecular Weight Distributions of Jasmine Rice Bran Protein Hydrolysate

Author(s):  
Kanrawee Hunsakul ◽  
Thunnop Laokuldilok ◽  
Witoon Prinyawiwatkul ◽  
Niramon Utama‐ang
2021 ◽  
Author(s):  
Kanrawee Hunsakul ◽  
Thunnop Laokuldilok ◽  
Vinyoo Sakdatorn ◽  
Wannaporn Klangpetch ◽  
Niramon Utama-ang

Abstract This study aimed to optimize the hydrolysis conditions for producing jasmine rice bran protein hydrolysate (JBH) using response surface methodology (RSM). The independent variables were the ratio of flavourzyme to alcalase (Fl: Al; 0: 100 to 15: 85; 2.84% enzyme concentration) and hydrolysis time (60–540 min). The optimum hydrolysate was obtained at an Fl: Al ratio of 9.81: 90.19 for 60 min, since it enabled high amounts of protein, high antioxidant activity and more low molecular weight proteins. The experimental values obtained were a degree of hydrolysis (DH) of 7.18%, a protein content of 41.73%, an IC50 for DPPH of 6.59 mg/mL, an IC50 for ABTS of 0.99 mg/mL, FRAP of 724.81 mmol FeSO4/100 g, and 322.35 and 479.05 mAU*s for peptides with a molecular weight of <3 and 3–5 kDa, respectively. Using a mixture of enzymes revealed the potential of mixed enzymes to produce JBH containing more small peptides and high antioxidant activity.


2018 ◽  
Vol 9 (20) ◽  
pp. 2733-2745 ◽  
Author(s):  
Guofeng Li ◽  
Wenli Feng ◽  
Nathaniel Corrigan ◽  
Cyrille Boyer ◽  
Xing Wang ◽  
...  

A library of N-acryloylamino acid polymers with controlled molecular weights and narrow molecular weight distributions (Mw/Mn < 1.20) was created by a universal and versatile photoinduced living radical polymerization technique.


2007 ◽  
Vol 60 (10) ◽  
pp. 788 ◽  
Author(s):  
Markus Busch ◽  
Marion Roth ◽  
Martina H. Stenzel ◽  
Thomas P. Davis ◽  
Christopher Barner-Kowollik

Simulations are employed to establish the feasibility of achieving controlled/living ethene polymerizations. Such simulations indicate that reversible addition–fragmentation chain transfer (RAFT) agents carrying a fluorine Z group may be suitable to establish control in high-pressure high-temperature ethene polymerizations. Based on these simulations, specific fluorine (F-RAFT) agents have been designed and tested. The initial results are promising and indicate that it may indeed be possible to achieve molecular weight distributions with a polydispersity being significantly lower than that observed in the conventional free radical process. In our initial trials presented here (using the F-RAFT agent isopropylfluorodithioformate), a correlation between the degree of polymerization and conversion can indeed be observed. Both the lowered polydispersity and the linear correlation between molecular weight and conversion indicate that control may in principle be possible.


Sign in / Sign up

Export Citation Format

Share Document