Synthesis Routes and Characterization of High-Purity, Single-Phase Gallium Nitride Powders

1996 ◽  
Vol 79 (9) ◽  
pp. 2309-2312 ◽  
Author(s):  
Cengiz M. Balkas ◽  
Robert F. Davis
RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 24930-24935 ◽  
Author(s):  
L. Giri ◽  
G. Mallick ◽  
A. C. Jackson ◽  
M. H. Griep ◽  
S. P. Karna

Schematic solvothermal synthesis of Bi2Te3 (a) producing Bi2Te3 hexagonal nanoplates (TEM) (b) which was converted into pellet (c). The electrical characterization (d) of the Bi2Te3 pellet surface showed significantly high current (more than 100 times) than through the pellet.


2005 ◽  
Vol 866 ◽  
Author(s):  
G.A. Hirata ◽  
J. Tao ◽  
P. Chen ◽  
K.C. Mishra ◽  
J. McKittrick

AbstractWe report on the fabrication and luminescent properties of rare earth-doped gallium nitride (GaN) phosphor powders. Single phase GaN and GaN:RE3+ powders were prepared by using a novel chemical route.In this work a new method for the synthesis of high purity, single phase doped GaN powders is reported. (Ga1-xREx)N powders are obtained by dissolving metal nitrates (Ga(NO3)3, (RE(NO3)3) in deionized water and an organic fuel (hydrazine) in order to form a gallium/RE amorphous/nanocrystalline powder. The RE-oxide powders are then reacted with heated ammonia at different temperatures and processing times producing GaN:RE phosphors. X-ray diffraction analysis showed that single phase GaN powders are formed. Preliminary results show (Ga0.95Eu0.05)N powders are luminescent, with the main emission occurring at 611 nm which is due to the 5Do→7F2 transitions in Eu3+. High-purity GaN powders are obtained according to Xray photoelectron spectroscopy (XPS) chemical analysis. Low-temperature cathodoluminescence and photoluminescence measurements indicate that the emission at λ=611 nm is originated from energy transfer from the host to the rare earth ion and to a direct excitation to the Eu3+ electronic levels.This method can be used to obtain red-luminescence GaN:Eu3+ and other rare earth (e.g. Er, Tb, Tm)-doped GaN powders to produce green and blue luminescence as well.


1995 ◽  
Vol 10 (4) ◽  
pp. 266-268 ◽  
Author(s):  
Cengiz M. Balkas ◽  
Cem Basceri ◽  
Robert F. Davis

Synthesis of high-purity, single-phase gallium nitride (GaN) powder has been achieved by reacting molten Ga with flowing ammonia (NH3) in a hot wall tube furnace. The optimum temperature, NH3 flow rate, and position of the boat in the hot wall tube furnace relative to the NH3 inlet for the complete reaction to pure GaN for our system were 975 °C, 400 standard cubic centimeters per minute (seem) and 50 cm, respectively. The X-ray diffraction (XRD) data revealed the GaN to be single phase with a = 3.1891 Å, c = 5.1855 Å, in space group P63mc, Z=2 and Dx =6.089 g cm−3. Scanning electron microscopy revealed a particle size distribution in the crushed material between 1 and 5 μm with most of the particles being ≍1 μm.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2012 ◽  
Vol 112 (12) ◽  
pp. 123722 ◽  
Author(s):  
Walid A. Hadi ◽  
Shamsul Chowdhury ◽  
Michael S. Shur ◽  
Stephen K. O'Leary

Sign in / Sign up

Export Citation Format

Share Document