scholarly journals Peroxisome Proliferator-activated Receptor Gamma Activation Induces Cell Cycle Arrest via the p53-independent Pathway in Human Anaplastic Thyroid Cancer Cells

2002 ◽  
Vol 93 (12) ◽  
pp. 1358-1365 ◽  
Author(s):  
Sung Hwa Chung ◽  
Naoyoshi Onoda ◽  
Tetsuro Ishikawa ◽  
Kana Ogisawa ◽  
Chiemi Takenaka ◽  
...  
Thyroid ◽  
2001 ◽  
Vol 11 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Victoria L. Greenberg ◽  
Jennifer M. Williams ◽  
John P. Cogswell ◽  
Michael Mendenhall ◽  
Stephen G. Zimmer

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhen Cheng ◽  
Shuang Yu ◽  
Weiman He ◽  
Jie Li ◽  
Tianyi Xu ◽  
...  

Thyroid cancer is the most common endocrine malignancy, and its incidence has increased in the past decades. Selenium has been shown to have therapeutic effects against several tumors. However, its role in thyroid cancer and its underlying molecular mechanism remains to be explored. In the present study, we demonstrated that sodium selenite significantly decreased cell viability and induced G0/G1 cell cycle arrest and apoptosis in thyroid cancer cells in a dose-dependent manner. Transcriptomics revealed that sodium selenite induced intracellular reactive oxygen species (ROS) by promoting oxidative phosphorylation. Increased intracellular ROS levels inhibited the AKT/mTOR signaling pathway and upregulated EIF4EBP3. Intracellular ROS inhibition by N-acetylcysteine (NAC) ameliorated the cellular effects of sodium selenite. The in vitro findings were reproduced in xenograft thyroid tumor models. Our data demonstrated that sodium selenite exhibits strong anticancer effects against thyroid cancer cells, which involved ROS-mediated inhibition of the AKT/mTOR pathway. This suggests that sodium selenite may serve as a therapeutic option for advanced thyroid cancer.


2005 ◽  
Vol 90 (3) ◽  
pp. 1383-1389 ◽  
Author(s):  
Maria G. Catalano ◽  
Nicoletta Fortunati ◽  
Mariateresa Pugliese ◽  
Lucia Costantino ◽  
Roberta Poli ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2502 ◽  
Author(s):  
Po-Sheng Yang ◽  
Yi-Chiung Hsu ◽  
Jie-Jen Lee ◽  
Ming-Jen Chen ◽  
Shih-Yuan Huang ◽  
...  

Heme oxygenase-1 (HO-1) is induced by a variety of stimuli and plays a multifaceted role in cellular protection. We have shown that HO-1 is overexpressed in thyroid cancer and is associated with tumor aggressiveness. Therefore, we set out to assess the effects of HO-1 inhibitors on the biology of thyroid cancer cells. Two different classes of HO-1 inhibitors were used, including a metalloporphyrin, zinc protoporphyrin-IX (ZnPP), and an azole antifungal agent, ketoconazole. The viability and colony formation of thyroid cancer cells decreased in a concentration- and time-dependent fashion following treatment with HO-1 inhibitors. Cancer cells exhibited a higher sensitivity to HO-1 inhibitors than non-malignant cells. HO-1 inhibitors induced a G0/G1 arrest accompanied by decreased cyclin D1 and CDK4 expressions and an increase in levels of p21 and p27. HO-1 inhibitors significantly increased intracellular ROS levels and suppressed cell migration and invasion. Oxygen consumption rate and mitochondrial mass were increased with ZnPP treatment. Mice treated with ZnPP had a reduced xenograft growth and diminished cyclin D1 and Ki-67 staining in tumor sections. Taken together, HO-1 inhibitors might have therapeutic potential for inducing cell cycle arrest and promoting growth suppression of thyroid cancer cells in vitro and in vivo.


2020 ◽  
Author(s):  
Xi Su ◽  
Jiaxin Liu ◽  
Haihong Zhang ◽  
Qingqing Gu ◽  
Xinrui Zhou ◽  
...  

Abstract Background Anaplastic thyroid cancer (ATC) is a kind of rare thyroid cancer with very poor prognosis. It is one of the deadliest cancers in human due to the aggressive behavior and resistance to treatment. Doxorubicin has been approved in ATC treatment as a single agent, but monotherapy still shows no improvement of the total survival in advanced ATC. Lenvatinib was investigated with encouraging results in treating the patients with radioiodine-refractory differentiated thyroid cancer (DTC). However, antitumor efficacy of combination therapy with lenvatinib and doxorubicin remains largely unclear. Methods The antitumor efficacy of combination therapy with lenvatinib and doxorubicin on ATC cell proliferation and was assessed by the MTT assay and colony formation. Flow cytometry were employed to assess ATC cells’ apoptosis and cell cycle arrest in response to combination therapy. Xenograft models were used to test its in vivo antitumor activity. Result Lenvatinib monotherapy was less effective than doxorubicin in treating ATC cell lines and xenografts model. The combination therapy of lenvatinib and doxorubicin significantly inhibited ATC cell proliferation and tumor growth in nude mice, and induced cell apoptosis and cell cycle arrest in compared to lenvatinib or doxorubicin monotherapy. Conclusion Lenvatinib promotes the antitumor effects of doxorubicin in ATC cell and xenografts model. Lenvatinib/doxorubicin combination may be a potential candidate therapeutic approach for ATC.


Sign in / Sign up

Export Citation Format

Share Document