scholarly journals Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana

2010 ◽  
Vol 12 (3) ◽  
pp. 247-262 ◽  
Author(s):  
JOHANNES SIEMENS ◽  
MARIA-CRUZ GONZÁLEZ ◽  
SEBASTIAN WOLF ◽  
CHRISTINA HOFMANN ◽  
STEFFEN GREINER ◽  
...  
Planta ◽  
1999 ◽  
Vol 208 (3) ◽  
pp. 409-419 ◽  
Author(s):  
Jutta Ludwig-Müller ◽  
Kerstin Pieper ◽  
Manfred Ruppel ◽  
Jerry D. Cohen ◽  
Ephraim Epstein ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Regina Mencia ◽  
Elina Welchen ◽  
Susann Auer ◽  
Jutta Ludwig-Müller

The clubroot disease (Plasmodiophora brassicae) is one of the most damaging diseases worldwide among brassica crops. Its control often relies on resistant cultivars, since the manipulation of the disease hormones, such as salicylic acid (SA) alters plant growth negatively. Alternatively, the SA pathway can be increased by the addition of beneficial microorganisms for biocontrol. However, this potential has not been exhaustively used. In this study, a recently characterized protein Oxidation Resistant 2 (OXR2) from Arabidopsis thaliana is shown to increase the constitutive pathway of SA defense without decreasing plant growth. Plants overexpressing AtOXR2 (OXR2-OE) show strongly reduced clubroot symptoms with improved plant growth performance, in comparison to wild type plants during the course of infection. Consequently, oxr2 mutants are more susceptible to clubroot disease. P. brassicae itself was reduced in these galls as determined by quantitative real-time PCR. Furthermore, we provide evidence for the transcriptional downregulation of the gene encoding a SA-methyltransferase from the pathogen in OXR2-OE plants that could contribute to the phenotype.


2002 ◽  
Vol 15 (7) ◽  
pp. 693-700 ◽  
Author(s):  
David Brodmann ◽  
Astrid Schuller ◽  
Jutta Ludwig-Müller ◽  
Roger A. Aeschbacher ◽  
Andres Wiemken ◽  
...  

Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.


2011 ◽  
Vol 38 (6) ◽  
pp. 462 ◽  
Author(s):  
Arati Agarwal ◽  
Vijay Kaul ◽  
Robert Faggian ◽  
James E. Rookes ◽  
Jutta Ludwig-Müller ◽  
...  

Microarray analysis was used to investigate changes in host gene expression during the primary stages of the interaction between the susceptible plant Arabidopsis thaliana (L.) Heynh ecotype Col-0 and the biotrophic pathogen Plasmodiophora brassicae Woronin. Analyses were conducted at 4, 7 and 10 days after inoculation (DAI) and revealed significant induction or suppression of a relatively low number of genes in a range of functional categories. At 4 DAI, there was induced expression of several genes known to be critical for pathogen recognition and signal transduction in other resistant host–pathogen interactions. As the pathogen further colonised root tissue and progressed through the primary plasmodium stage to production of zoosporangia at 7 and 10 DAI, respectively, fewer genes showed changes in expression. The microarray results were validated by examining a subset of induced genes at 4 DAI by quantitative real-time reverse transcriptase PCR (RT-qPCR) analysis all of which correlated positively with the microarray data. The two A. thaliana mutants jar1 and coiI tested were found to be susceptible to P. brassicae. The involvement of defence-related hormones in the interaction was further investigated and the findings indicate that addition of salicylic acid can suppress clubroot disease in A. thaliana plants.


1994 ◽  
Vol 5 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Seok So Chang ◽  
Soon Ki Park ◽  
Byung Chul Kim ◽  
Bong Joong Kang ◽  
Dal Ung Kim ◽  
...  

1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty van Loenen-Martinet ◽  
Hetty Blankestijn de Vries

Sign in / Sign up

Export Citation Format

Share Document