scholarly journals A Novel Target (Oxidation Resistant 2) in Arabidopsis thaliana to Reduce Clubroot Disease Symptoms via the Salicylic Acid Pathway without Growth Penalties

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Regina Mencia ◽  
Elina Welchen ◽  
Susann Auer ◽  
Jutta Ludwig-Müller

The clubroot disease (Plasmodiophora brassicae) is one of the most damaging diseases worldwide among brassica crops. Its control often relies on resistant cultivars, since the manipulation of the disease hormones, such as salicylic acid (SA) alters plant growth negatively. Alternatively, the SA pathway can be increased by the addition of beneficial microorganisms for biocontrol. However, this potential has not been exhaustively used. In this study, a recently characterized protein Oxidation Resistant 2 (OXR2) from Arabidopsis thaliana is shown to increase the constitutive pathway of SA defense without decreasing plant growth. Plants overexpressing AtOXR2 (OXR2-OE) show strongly reduced clubroot symptoms with improved plant growth performance, in comparison to wild type plants during the course of infection. Consequently, oxr2 mutants are more susceptible to clubroot disease. P. brassicae itself was reduced in these galls as determined by quantitative real-time PCR. Furthermore, we provide evidence for the transcriptional downregulation of the gene encoding a SA-methyltransferase from the pathogen in OXR2-OE plants that could contribute to the phenotype.

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 519-522 ◽  
Author(s):  
A. Arbeiter ◽  
M. Fähling ◽  
H. Graf ◽  
M.D. Sacristán ◽  
J. Siemens

Two resistance phenotypes to P. brassicae have been found in A. thaliana. A first resistance phenotype has been detected to the isolate 'e<sub>2</sub>' and is polygenically inherited. The second resistance to isolate 'e<sub>3</sub>' is caused by the dominant resistance gene RPB1. By crossing no influence could be shown for salicylic acid, jasmonic acid and ethylene in the latter resistance reaction. The RPB1 locus was narrowed down to 71 kb on chromosome 1, where three pseudogenes and 13 coding sequences are located. Six of them showed cosegregation with RPB1. None of these sequences have similarities to identified resistance genes or other known genes. Ten coding sequences were expressed, but CDS9 was exclusively expressed in the resistant ecotype Tsu-0.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0248648
Author(s):  
Dandan Xi ◽  
Xiaofeng Li ◽  
Lu Gao ◽  
Zhaohui Zhang ◽  
Yuying Zhu ◽  
...  

Clubroot is one of the most serious diseases affecting Brassicaceae plants worldwide. However, there is no effective control method for clubroot. Salicylic acid (SA) is a plant hormone that plays a critical role in plant defense. In our study, we found the disease severity of a clubroot-sensitive cultivar of pakchoi, Xinxiaqing, was reduced with 0.6mM exogenous SA after the infection of P. brassicae. To investigate the mechanism of SA-reduced disease severity against clubroot, then we analyzed the plant growth, alteration of antioxidant enzyme system, and related gene expression of Xinxiaqing. Results showed that the clubroot incidence rate and disease index were decreased after being treated with 0.6 mM exogenous SA. Furthermore, plant growth, reactive oxygen species (ROS) contents, and membrane lipid peroxidation were changed. The activities of antioxidant enzymes, including superoxide dismutase (SOD), ascorbic acid-peroxidase (APX), catalase (CAT), and glutathione reductase (GR), were increased. Additionally, the production rates of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2·–) were also inhibited. The expression levels of genes, encoding SOD, APX, CAT, and GR, were increased. By summering all results, we conclude that 0.6 mM SA contributes to the reduction of disease severity to clubroot by increasing the activities of antioxidant enzymes, abilities of osmotic regulation, and ROS scavenging to reduce the clubroot-induced damage in pakchoi.


2021 ◽  
Author(s):  
Rina Fujihara ◽  
Naoyuki Uchida ◽  
Toshiaki Tameshige ◽  
Nozomi Kawamoto ◽  
Yugo Hotokezaka ◽  
...  

AbstractThe shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis indicates that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.


2021 ◽  
Vol 48 (1) ◽  
pp. 103
Author(s):  
Md. Abdul Kayum ◽  
Ujjal Kumar Nath ◽  
Jong-In Park ◽  
Mohammad Rashed Hossain ◽  
Hoy-Taek Kim ◽  
...  

Clubroot is a devastating disease of Brassicaceae caused by the biotrophic protist Plasmodiophora brassicae. The progression of clubroot disease is modulated by the glucosinolate (GSL) profile of the host plant. GSL is hydrolysed by the enzyme myrosinase upon cell disruption and gives rise to metabolites like isothiocyanate, nitriles, thiocyanates, epithionitriles and oxazolidines. Some of these metabolites play important roles in the plant’s defence mechanism. We identified 13 Myrosinase (Myro) and 28 Myrosinase-Binding Protein-like (MBP) genes from Brassica oleracea L. using a comparative genomics approach and characterised them through in silico analyses. We compared the expression patterns of these genes in a clubroot-susceptible line and a resistant line following inoculation with P. brassicae. Two BolMyro and 12 BolMBP genes were highly expressed in the susceptible line, whereas only one BolMyro and five BolMBP genes were highly expressed in the resistant line. Principal component analysis confirmed that specific GSL profiles and gene expression were modulated due to pathogen infection. Plants with higher levels of neoglucobrassicin, glucobrassicin and methooxyglucobrassicin produced disease symptoms and formed galls, whereas, plants with higher levels of sinigrin, hydroxyglucobrassicin and progoitrin produced less symptoms with almost no galls. Our results provide insights into the roles of Myro and MBP genes in GSL hydrolysis during P. brassicae infection, which will help for developing clubroot resistant cabbage lines.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 156-161 ◽  
Author(s):  
P. Kopecký ◽  
I. Doležalová ◽  
M. Duchoslav ◽  
K. Dušek

Fifty genotypes of&nbsp;cauliflovwer&nbsp;(Brassica oleracea var. botrytis)&nbsp;were evaluated for resistance to clubroot disease (Plasmodiophora brassicae Wor.) under controlled conditions in a plant growth chamber. The cultivars with the highest resistance were Brilant, Agora, and Bora, while the most susceptible were the cultivars White Top, White Fox, and Octavian. The variation in disease index is probably due to different pathogenicity rates of clubroot pathotypes and genetic heterogeneity of European cauliflower cultivars. The obtained results will be tested in an infested and non-infested field. &nbsp;


2020 ◽  
Vol 43 (11) ◽  
pp. 2755-2768
Author(s):  
Changxin Liu ◽  
Kostadin E. Atanasov ◽  
Nazanin Arafaty ◽  
Ester Murillo ◽  
Antonio F. Tiburcio ◽  
...  

2002 ◽  
Vol 15 (7) ◽  
pp. 693-700 ◽  
Author(s):  
David Brodmann ◽  
Astrid Schuller ◽  
Jutta Ludwig-Müller ◽  
Roger A. Aeschbacher ◽  
Andres Wiemken ◽  
...  

Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.


2018 ◽  
Vol 15 (4) ◽  
pp. 675-683
Author(s):  
Le Thi Anh Tu ◽  
Pham Thi Le Ha

Plasmodiophora brassicae- the casual cause of clubroot disease of plants belonging to the family Brassicaceae. This soil-borne fungus infects plants through root hairs. Diseased roots become swollen and deformed. Thus, it’s difficult for plants to absorb water and nutrients. There are some methods used to control this disease including soil fumigation, soil pH control, fungicides, surfactants applications, calcium supplementation, but the results are still restricted. Plasmodiophora brassicae was isolated, identified and artificial inoculated on the Chinese cabbage. The rate of root hair infection and gall formation depended on the spore density and growth media. The increase of the pathogen density lead to the increase of disease symptoms. Silver nanoparticles (SNPs) are widely used as an agent for antifungal treatment. The antimicrobial activity of the nanoparticles varies on the size, shape, and the function of the surface area. The γ - irradiation method to synthesize SNPs is known as a method that can be controlled the out coming sizes, shapes and size distribution of particles. The average diameter of silver nanoparticles in this research was 9.5nm. In the liquid culture and soil, SNPs exhibited a controlling effect on P. brassicae. The fungicide activity depended on the SNP concentrations and the medium; no disease symptoms were found at the SNP concentrations of 1.06 ppm in the liquid culture, and 10 and 20 ppm in soil. Results of the study also showed that the biomass and height of infected plants were much lower than those of the healthy plants. Comparing to the plants that were grown in the sterilized soil, there was not significant difference between the biomass and the height of plants exposed to pathogen and treated with SNPs.


Sign in / Sign up

Export Citation Format

Share Document