Detection of fluid migration pathways in seismic data: implications for fault seal analysis

2005 ◽  
Vol 17 (1) ◽  
pp. 141-153 ◽  
Author(s):  
J. H. Ligtenberg
2020 ◽  
Vol 8 (4) ◽  
pp. SV17-SV30
Author(s):  
Sebastian Cardona ◽  
Lesli Wood ◽  
Lorena Moscardelli ◽  
Dallas Dunlap

Mass-transport complexes (MTCs) are important stratigraphic elements in many deepwater basins. In hydrocarbon exploration, MTCs have traditionally been identified as seals although they can also act as migration pathways or cannibalize and compartmentalize adjacent reservoirs. Although the ever-improving resolution of seismic data has enhanced the knowledge about these deposits (e.g., geometry, distribution), at present the potential of MTCs to act as top and/or lateral seals is difficult to predict predrilling and few case studies are publicly available. The key objective here is to present examples of seismically resolvable characteristics of two MTCs in the Jubilee gas field, offshore Gulf of Mexico: one of the MTCs cannibalized part of the reservoir, and the other acted as the top seal. The Jubilee field is an area where the ability of MTCs to act as a top seal has been proven — the field produced approximately 205 billion cubic feet of natural gas until abandonment in 2016. When evaluating the sealing potential of MTCs, seismic interpretation can offer a powerful technique to identify indicators of hydrocarbon leakage. Additionally, mass flows that form MTCs can be highly erosive and cannibalize underlying reservoir deposits, which increase reservoir heterogeneity that can lead to compartmentalization. Our results indicate that the seal MTC in the Jubilee field is a detached MTC and that the translational morphodomain overlies the gas accumulation. Consequently, when predicting the seal potential of MTCs from seismic data, it is important to determine (1) the type of MTC (i.e., attached versus detached), (2) the specific MTC morphodomain overlying the hydrocarbon accumulation/prospect (i.e., the headwall, translational, or toe morphodomains), and (3) the presence of seismic indicators of fluid migration pathways (e.g., gas chimneys, pockmarks, etc.). These results shed some light on the present challenges of predicting the seal potential of MTCs in frontier basins around the world.


2016 ◽  
Vol 4 (1) ◽  
pp. SB131-SB148 ◽  
Author(s):  
Jared W. Kluesner ◽  
Daniel S. Brothers

Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a [Formula: see text] 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active fault system offshore central California.


2020 ◽  
Author(s):  
Ingo Pecher ◽  
Bryan Davy ◽  
Jess Hillman ◽  
Lowell Stott ◽  
Richard Coffin ◽  
...  

<p>An area of the seafloor of >50,000 km<sup>2</sup> on the Chatham Rise and Bounty Trough east of New Zealand’s South Island is covered by seafloor depressions.  Distribution and type of these depressions seem to be bathymetrically controlled, with smaller depressions occurring between ~500-700 m water depth and larger ones in water depths of >800 m.  Formation of these features is enigmatic.  The smaller features display typical features of pockmarks caused by sudden escape of fluids and gas.  Echosounder and seismic data furthermore reveal wide-spread buried pockmarks that appear to have been formed repeatedly near glacial-stage maxima.  Some of the buried pockmarks appear to be stacked, often at a slight offset, underlain by positive-polarity reflections, and aligned with structures that promote fluid escape.  These patterns are compatible with repeated release of fluids from deep sources and precipitation of authigenic material.  Some of the larger seafloor depressions appear to involve interaction with the Southland Current.  These depressions have been interpreted as contouritic mounds although alternative hypotheses have been proposed and they may be linked to deeply rooted fluid migration.</p><p>Pronounced Δ<sup>14</sup>C anomalies during the last glacial termination, around the time of formation of the most recent pockmarks, indicate release of significant amounts of geologic carbon.  The pockmark fields coincide with the extent of the flat-subducted Hikurangi Plateau.  We hypothesize formation of the pockmarks is linked to repeated release of CO<sub>2</sub> that originates from carbonates on top of the Hikurangi Plateau.  We will discuss this hypothesis, open questions in particular related to the “valve” mechanism controlling repeated release and pockmark formation, as well as alternative mechanisms for possible formation of seafloor depressions in the study area.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Jinxiu Yang ◽  
Mingyue Lu ◽  
Zhiguang Yao ◽  
Min Wang ◽  
Shuangfang Lu ◽  
...  

Seabed methane seepage has gained attention from all over the world in recent years as an important source of greenhouse gas emission, and gas hydrates are also regarded as a key factor affecting climate change or even global warming due to their shallow burial and poor stability. However, the relationship between seabed methane seepage and gas hydrate systems is not clear although they often coexist in continental margins. It is of significance to clarify their relationship and better understand the contribution of gas hydrate systems or the deeper hydrocarbon reservoirs for methane flux leaking to the seawater or even the atmosphere by natural seepages at the seabed. In this paper, a geophysical examination of the global seabed methane seepage events has been conducted, and nearby gas hydrate stability zone and relevant fluid migration pathways have been interpreted or modelled using seismic data, multibeam data, or underwater photos. Results show that seabed methane seepage sites are often manifested as methane flares, pockmarks, deep-water corals, authigenic carbonates, and gas hydrate pingoes at the seabed, most of which are closely related to vertical fluid migration structures like faults, gas chimneys, mud volcanoes, and unconformity surfaces or are located in the landward limit of gas hydrate stability zone (LLGHSZ) where hydrate dissociation may have released a great volume of methane. Based on a comprehensive analysis of these features, three major types of seabed methane seepage are classified according to their spatial relationship with the location of LLGHSZ, deeper than the LLGHSZ (A), around the LLGHSZ (B), and shallower than LLGHSZ (C). These three seabed methane seepage types can be further divided into five subtypes considering whether the gas source of seabed methane seepage is from the gas hydrate systems or not. We propose subtype B2 represents the most important seabed methane seepage type due to the high density of seepage sites and large volume of released methane from massive focused vigorous methane seepage sites around the LLGHSZ. Based on the classification result of this research, more measures should be taken for subtype B2 seabed methane seepage to predict or even prevent ocean warming or climate change.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xi Wang ◽  
Yin Liu ◽  
Jian Cao ◽  
Yiduo Liu ◽  
Bing Luo ◽  
...  

Deep-seated faults and folds of foreland basin systems have become important exploration targets in the recent years because they are crucial in controlling fluid migration and hydrocarbon accumulation. In this study, we analyzed the characteristics and formation history of these structures in the northwestern Sichuan Basin using recently acquired two-dimensional (2D) and three-dimensional (3D) seismic data. The seismic interpretation revealed that the thrust sheets, tectonic wedges, and foredeep were well developed in the northwestern Sichuan Basin from the mountain to the basin. Forward thrusts, fault-bend folds, and wedges are the main types of structures in the thrust sheets and tectonic wedges. The deep-seated faults and folds were easily recognized in the high-resolution 3D seismic data. The imbricate thrust faults that merged into detachment layers of the Lower Cambrian are the main types of structures in the foredeep, and they show a prominent strike-slip influence in the horizontal direction. The formation of these structures in the foredeep in the northwestern Sichuan Basin mainly endured two stages of thrusting, including those during the Middle-to-Late Triassic and Cenozoic. Based on the tectonic evolution and seismic data, we infer that these deep-seated faults and folds in the foredeep may have formed earlier than the northern Longmen Shan fold-and-thrust belts and they may have been initially active in the late of Early Triassic and reactive during the Cenozoic. Furthermore, evaporites in the Lower and Middle Triassic were crucial in forming these structures. The petroleum exploration data suggested that the deep-seated faults can facilitate hydrocarbon accumulation. The thrust faults in the foredeep were more likely to act as migration pathways for fluids instead of sealing barriers along the horizontal direction. The interconnected reservoirs of deep-seated folds possess a great potential to allow large-scale hydrocarbon accumulation. Our study provides a good example for evaluating the hydrocarbon exploration potential in the deeply buried area in the sedimentary basin.


Sign in / Sign up

Export Citation Format

Share Document