Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions

1993 ◽  
Vol 44 (4) ◽  
pp. 665-675 ◽  
Author(s):  
R. J. HAYNES ◽  
G. S. FRANCIS
2021 ◽  
Vol 13 (17) ◽  
pp. 9769
Author(s):  
Gábor Csitári ◽  
Zoltán Tóth ◽  
Mónika Kökény

The effect of two types of organic amendment (manure and straw incorporation) and various doses (0–200 kg N*ha−1) of mineral N fertilization on microbial biomass C (MBC), aggregate stability (AS), soil organic C (SOC) and grain yield were investigated in an IOSDV long-term fertilization experiment (Keszthely, Hungary). This study was conducted during years 2015–2016 in a sandy loam Ramann-type brown forest soil (Eutric Cambisol according to WRB). Organic amendments had a significant effect on AS, MBC and SOC, increased their values compared to the unamended control. The organic amendments showed different effects on AS and MBC. AS was increased the most by straw incorporation and MBC by manure application. The magnitude of temporal variability of AS and MBC differed. Presumably, the different effects of organic amendments and the different degrees of temporal variability explain why there was only a weak (0.173) correlation between AS and MBC. AS did not correlate with SOC or grain yield. MBC correlated (0.339) with SOC but not with the grain yield. The N fertilizer dose did not have a significant effect on AS and MBC, but had a significant effect on SOC and grain yield.


Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 493 ◽  
Author(s):  
MR Carter ◽  
PM Mele

Changes and relationships for organic C, microbial biomass C and N, and soil structural stability indices were determined at the soil surface after 10 years of direct drilling stubble retained (DDR) and stubble burnt (DDB), and cultivation with stubble burnt (CCB) for cropping systems on a sandy clay loam, duplex soil (calcic luvisol) in south-eastern Australia. Direct drilling caused a slight but significant increase in soil organic C at the 0-25 mm soil depth compared to the cultivated treatment. Microbial biomass C and N increases over the 0-100 mm soil depths were seasonal and generally greater for the DDR in comparison with DDB and CCB systems. Use of short duration wet sieving for the 0-25 mm soil depth showed a significant increase in aggregate stability for the DDR, especially for 2-10 mm sized aggregates, compared with the other tillage treatments. Such differences were reduced by standard wet sieving or use of a dispersion test illustrating the fragile nature of these unstable aggregates developed under cropping systems. Soil structural indices (water stable aggregates >2.00 mm, and >0.25 mm; mean weight diameter) were weakly correlated with increases in microbial biomass (r = 0.45, P < 0.01) and to total organic C (r = 0.35, P < 0.05). For these tillage systems, microbial biomass tended to be a poor predictor of changes in soil organic C. Overall, the long term effect of direct drilling and stubble retention in these cropping systems provided only relatively minor increases in organic C and, consequently, aggregate stability.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


1984 ◽  
Vol 64 (3) ◽  
pp. 355-367 ◽  
Author(s):  
V. O. BIEDERBECK ◽  
C. A. CAMPBELL ◽  
R. P. ZENTNER

Effects of rotation length, fallow-substitute crops, and N and P fertilizer on some physical and biological properties of a Brown Chernozemic loam in southwestern Saskatchewan were determined over a period of 16 yr. After 12 yr, the erodible fraction in the top 15 cm of soil (i.e., < 0.84 mm) was inversely related to trash conserved and thus rotation length. Soil organic N (in the top 15 cm) increased from 0.18 to 0.20% in continuous-type rotations receiving an average 32 kg N∙ha−1∙yr−1 and adequate P, but it did not increase in continuous wheat receiving P only, nor in fallow rotations, except the one that included fall rye (Secale cereale L.). This N increase was credited partly to fertilizer and partly to more efficient use and cycling of subsoil NO3-N via plant roots and crop residues. After 10 yr, well-fertilized continuous-type rotations had a 13% greater C content than fallow rotations and continuous wheat receiving only P. In the top 7.5 cm of soil under the four rotations examined in detail, bacterial numbers were lowest in fallow-wheat, intermediate in fallow-wheat-wheat, higher in continuous wheat receiving N and P, and highest in continuous wheat receiving only P. Similarly, microbial biomass C in these four rotations was 180, 226, 217 and 357 kg∙ha−1; biomass N was 52, 65, 54 and 72 kg∙ha−1; and biomass C/N ratios were 3.4, 3.5, 4.1 and 5.1, respectively. Differences in biomass C/N, respiration rates and numbers of bacteria, actinomycetes and yeasts indicated both quantitative and qualitative microbial changes and reflected increasing rotation length and differences in fertility. Potentially mineralizable N (No) was 192 kg∙ha−1 for adequately fertilized continuous wheat, and exceeded No in fallow-wheat by 45%, in fallow-wheat-wheat by 17% and in continuous wheat receiving only P by 25%. The latter rotation contained a large but fairly inactive microbial population. We concluded that land degradation caused by frequent summerfallowing can be arrested and the decline in amount and quality of organic matter reversed by use of available agronomic technology. Key words: Microbial biomass, microbial activity, potentially mineralizable N, respiration, soil erodibility


Sign in / Sign up

Export Citation Format

Share Document