Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production

2011 ◽  
Vol 110 (5) ◽  
pp. 1215-1223 ◽  
Author(s):  
J.M. Scervino ◽  
V.L. Papinutti ◽  
M.S. Godoy ◽  
M.A. Rodriguez ◽  
I. Della Monica ◽  
...  
Author(s):  
Gurupadam Hema Bindu ◽  
Govindan Selvakumar ◽  
Kaushal K. Upreti ◽  
Narayana Sunil Kumar ◽  
Duraisamy Kalaivanan

2014 ◽  
Vol 80 (10) ◽  
pp. 3081-3085 ◽  
Author(s):  
Gilberto de Oliveira Mendes ◽  
David Lopez Zafra ◽  
Nikolay Bojkov Vassilev ◽  
Ivo Ribeiro Silva ◽  
José Ivo Ribeiro ◽  
...  

ABSTRACTDuring fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F−adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization byAspergillus nigerwas examined. Al2O3adsorbed part of the F−released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F−while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F−measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F−per liter can be removed from solution by biochar when added at 3 g liter−1to the culture medium. Thus, biochar acted as an F−sink during RP solubilization and led to an F−concentration in solution that was less inhibitory to the process. In the presence of biochar,A. nigerproduced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F−and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.


1979 ◽  
Vol 109 (9) ◽  
pp. 1592-1600 ◽  
Author(s):  
Charles A. Banta ◽  
Edgar T. Clemens ◽  
Mary M. Krinsky ◽  
Ben E. Sheffy

2021 ◽  
pp. 104-124
Author(s):  
Jyoti Singh Jadaun ◽  
Amit K. Rai ◽  
Sudhir P. Singh

2012 ◽  
Vol 3 (1) ◽  
pp. 23-32 ◽  
Author(s):  
A. Do Carmo ◽  
M. De Oliveira ◽  
D. Da Silva ◽  
S. Castro ◽  
A. Borges ◽  
...  

There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh – lactate dehydrogenase, adhE – Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 – catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.


1928 ◽  
Vol 74 (306) ◽  
pp. 443-453 ◽  
Author(s):  
F. Golla ◽  
S. A. Mann ◽  
F. Golla ◽  
R. G. B. Marsh

The preceding studies on the acid-base equilibrium in psychotics have made it evident that the failure to adjust must be attributed in the first instance to an inadequacy of the respiratory compensatory mechanism, and can be in no sense attributable to either a deficiency in the buffering power of the blood itself or to an increased organic acid production (acidosis). We have endeavoured to determine the excitability of the respiratory centre to the stimulus created by CO2. For this purpose a number of psychotic patients were tested as to the excitability of the respiratory centre to air containing 2% CO2 and the reaction compared with that obtaining in a number of normal subjects.


2019 ◽  
Vol 687 ◽  
pp. 341-347 ◽  
Author(s):  
Quyen Ngoc Minh Tran ◽  
Hiroshi Mimoto ◽  
Mitsuhiko Koyama ◽  
Kiyohiko Nakasaki

Sign in / Sign up

Export Citation Format

Share Document