Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation

2011 ◽  
Vol 110 (6) ◽  
pp. 1485-1494 ◽  
Author(s):  
R. Moeller ◽  
M. Wassmann ◽  
G. Reitz ◽  
P. Setlow
2006 ◽  
Vol 188 (11) ◽  
pp. 3740-3747 ◽  
Author(s):  
Barbara Setlow ◽  
Swaroopa Atluri ◽  
Ryan Kitchel ◽  
Kasia Koziol-Dube ◽  
Peter Setlow

ABSTRACT Dipicolinic acid (DPA) comprises ∼10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective α/β-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-γ. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most α/β-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to α/β-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.


2019 ◽  
Vol 10 ◽  
Author(s):  
Marta Cortesão ◽  
Felix M. Fuchs ◽  
Fabian M. Commichau ◽  
Patrick Eichenberger ◽  
Andrew C. Schuerger ◽  
...  

2011 ◽  
Vol 77 (19) ◽  
pp. 6746-6754 ◽  
Author(s):  
Jose-Luis Sanchez-Salas ◽  
Barbara Setlow ◽  
Pengfei Zhang ◽  
Yong-qing Li ◽  
Peter Setlow

ABSTRACTThe first ∼10% of spores released from sporangia (early spores) duringBacillus subtilissporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ∼24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca2+but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.


2000 ◽  
Vol 66 (2) ◽  
pp. 620-626 ◽  
Author(s):  
Paul J. Riesenman ◽  
Wayne L. Nicholson

ABSTRACT Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing thegerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H2O2) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H2O2, as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing thegerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing thecotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 andcotE::cat mutations behaved likegerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.


Sign in / Sign up

Export Citation Format

Share Document