scholarly journals Spherical collapse in modified gravity with the Birkhoff theorem

2008 ◽  
Vol 385 (1) ◽  
pp. 411-422 ◽  
Author(s):  
Björn Malte Schäfer ◽  
Kazuya Koyama
2020 ◽  
Vol 501 (1) ◽  
pp. 254-260
Author(s):  
Ali Rida Khalifeh ◽  
Raul Jimenez

ABSTRACT The discovery of 19 dwarf galaxies without dark matter (DM) provides, counterintuitively, strong support for the ΛCDM standard model of cosmology. Their presence is well accommodated in a scenario where the DM is in the form of cold dark particles. However, it is interesting to explore quantitatively what is needed from modified gravity models to accommodate the presence of these galaxies and what extra degree of freedom is needed in these models. To this end, we derive the dynamics at galaxy scales (Virial theorem) for a general class of modified gravity models. We distinguish between theories that satisfy the Jebsen–Birkhoff theorem, and those that do not. Our aim is to develop tests that can distinguish whether DM is part of the theory of gravity or a particle. The 19 dwarf galaxies discovered provide us with a stringent test for models of modified gravity. Our main finding is that there will always be an extra contribution to the Virial theorem coming from the modification of gravity, even if a certain galaxy shows very small, if not negligible, trace of DM, as has been reported recently. Thus, if these and more galaxies are confirmed as devoid (or negligible) of DM, while other similar galaxies have abundant DM, it seems interesting to find modifications of gravity to describe DM. Our result can be used by future astronomical surveys to put constraints on the parameters of modified gravity models at astrophysical scales where DM is described as such.


2020 ◽  
Vol 497 (2) ◽  
pp. 1885-1894
Author(s):  
Farbod Hassani ◽  
Lucas Lombriser

ABSTRACT We present MG-evolution, an N-body code simulating the cosmological structure formation for parametrized modifications of gravity. It is built from the combination of parametrized linear theory with a parametrization of the deeply non-linear cosmological regime extrapolated from modified spherical collapse computations that cover the range of known screening mechanisms. We test MG-evolution, which runs at the speed of conventional ΛCDM simulations, against a suit of existing exact model-specific codes, encompassing linearized and chameleon f(R) gravity as well as the normal branch of the Dvali–Gabadadz–Porrati braneworld model, hence covering both large-field value and large-derivative screening effects. We compare the non-linear power spectra produced by the parametrized and model-specific approaches over the full range of scales set by the box size and resolution of our simulations, k = (0.05 − 2.5) $h\, \mathrm{Mpc}^{-1}$, and for two redshift slices, z = 0 and z = 1. We find sub-percent to one-percent level recovery of all the power spectra generated with the model-specific codes for the full range of scales. MG-evolution can be used for generalized and accurate tests of gravity and dark energy with the increasing wealth of high-precision cosmological survey data becoming available over the next decade.


2009 ◽  
Vol 79 (8) ◽  
Author(s):  
Matthew C. Martino ◽  
Hans F. Stabenau ◽  
Ravi K. Sheth

2021 ◽  
pp. 2150082
Author(s):  
A. H. Ziaie ◽  
H. Shabani ◽  
S. Ghaffari

In recent years, Rastall gravity is undergoing a considerable surge in popularity. This theory purports to be a modified gravity theory with a non-conserved energy–momentum tensor (EMT) and an unusual non-minimal coupling between matter and geometry. This work looks for the evolution of homogeneous spherical perturbations within the Universe in the context of Rastall gravity. Using the spherical Top-Hat collapse model, we seek for exact solutions in linear regime for density contrast of dark matter (DM) and dark energy (DE). We find that the Rastall parameter affects crucially the dynamics of density contrasts for DM and DE and the fate of spherical collapse is different in comparison to the case of general relativity (GR). Numerical solutions for perturbation equations in nonlinear regime reveal that DE perturbations could amplify the rate of growth of DM perturbations depending on the values of Rastall parameter.


2019 ◽  
Vol 19 (2) ◽  
pp. 447-453
Author(s):  
Nasim Derakhshanian ◽  
Amir Ghalee ◽  
◽  
Keyword(s):  

2010 ◽  
Vol 3 (2) ◽  
pp. 12-12
Author(s):  
S. Nojiri ◽  
S. D. Odintsov
Keyword(s):  

2021 ◽  
Vol 31 ◽  
pp. 100756
Author(s):  
Jin-Zhao Yang ◽  
Shahab Shahidi ◽  
Tiberiu Harko ◽  
Shi-Dong Liang

2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


Sign in / Sign up

Export Citation Format

Share Document