scholarly journals A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis

2010 ◽  
pp. no-no ◽  
Author(s):  
DONGWON BAEK ◽  
PRASANTH PATHANGE ◽  
JUNG-SUNG CHUNG ◽  
JIAFU JIANG ◽  
LIQIONG GAO ◽  
...  
2007 ◽  
Vol 64 (1-2) ◽  
pp. 1-15 ◽  
Author(s):  
Yeon Jong Koo ◽  
Myeong Ae Kim ◽  
Eun Hye Kim ◽  
Jong Tae Song ◽  
Choonkyun Jung ◽  
...  

2006 ◽  
Vol 47 (8) ◽  
pp. 1169-1174 ◽  
Author(s):  
Frank Waller ◽  
Axel Müller ◽  
Kwi-Mi Chung ◽  
Yun-Kiam Yap ◽  
Kimiyo Nakamura ◽  
...  

2019 ◽  
Vol 374 (1767) ◽  
pp. 20180314 ◽  
Author(s):  
Na Cui ◽  
Hong Lu ◽  
Tianzuo Wang ◽  
Wenhao Zhang ◽  
Le Kang ◽  
...  

Effector proteins present in aphid saliva are thought to modulate aphid–plant interactions. Armet, an effector protein, is found in the phloem sap of pea-aphid-infested plants and is indispensable for the survival of aphids on plants. However, its function in plants has not been investigated. Here, we explored the functions of Armet after delivery into plants. Examination of the transcriptomes of Nicotiana benthamiana and Medicago truncatula following transgenic expression of Armet or infiltration of the protein showed that Armet activated pathways associated with plant–pathogen interactions, mitogen-activated protein kinase and salicylic acid (SA). Armet induced a fourfold increase in SA accumulation by regulating the expression of SAMT and SABP2 , two genes associated with SA metabolism, in Armet-infiltrated tobacco. The increase in SA enhanced the plants' resistance to bacterial pathogen Pseudomonas syringae but had no detectable adverse effects on aphid survival or reproduction. Similar molecular responses and a chlorosis phenotype were induced in tobacco by Armet from two aphid species but not by locust Armet, suggesting that the effector function of Armet may be specific for aphids. The results suggest that Armet causes plants to make a pathogen-resistance decision and reflect a novel tripartite insect–plant–pathogen interaction. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Jihan Li ◽  
Silei Chen ◽  
Weixing Wang ◽  
Chunyan Li

Phytoplasma-infected Chinese cherry (Cerasus pseudocerasus L.) exhibits symptoms of phyllody and stiff fruit. To reveal the molecular mechanism of stiff fruit, the current study integrated transcriptome with metabolome. Results showed that the differentially expressed genes and the differentially accumulated metabolites were related to a high proportion of two aspects: pathogen resistance and signaling or regulatory functions, and the molecular mechanism of stiff fruit that were majorly induced by plant biotic stress response via phytohormones signal transduction, especially signal pathways of salicylic acid, auxin, and abscisic acid. Notably, there was a large overlap between phytoplasma stress response and drought stress response genes. Phytohormone content displayed significant difference that abscisic acid and salicylic acid content of phytoplasma-infected fruit were higher than that of healthy fruit, whereas zeatin, jasmonic acid, and IAA showed the opposite results. In addition, the expression of key candidate genes, including IAA4, IAA9, IAA14, IAA31, ARF5, ARF9, GH3.1, GH3.17, SAUR20, SAUR32, SAUR40, PR1a, PRB1, TGA10, SnRK2.3, and AHK2, was responsible for cherry stiff fruit. In conclusion, the current study contributed a foundation for understanding the molecular mechanism of cherry phyllody disease on stiff fruit, a better understanding of fruit development, and found the potential candidate genes involved in cherry stiff fruit, which could be used for further research in associated fields.


2010 ◽  
Vol 23 (3) ◽  
pp. 340-351 ◽  
Author(s):  
Madhumati Mukherjee ◽  
Katherine E. Larrimore ◽  
Naushin J. Ahmed ◽  
Tyler S. Bedick ◽  
Nadia T. Barghouthi ◽  
...  

The ascorbic acid (AA)-deficient Arabidopsis thaliana vtc1-1 mutant exhibits increased resistance to the virulent bacterial pathogen Pseudomonas syringae. This response correlates with heightened levels of salicylic acid (SA), which induces antimicrobial pathogenesis-related (PR) proteins. To determine if SA-mediated, enhanced disease resistance is a general phenomenon of AA deficiency, to elucidate the signal that stimulates SA synthesis, and to identify the biosynthetic pathway through which SA accumulates, we studied the four AA-deficient vtc1-1, vtc2-1, vtc3-1, and vtc4-1 mutants. We also studied double mutants defective in the AA-biosynthetic gene VTC1 and the SA signaling pathway genes PAD4, EDS5, and NPR1, respectively. All vtc mutants were more resistant to P. syringae than the wild type. With the exception of vtc4-1, this correlated with constitutively upregulated H2O2, SA, and messenger RNA levels of PR genes. Double mutants exhibited decreased SA levels and enhanced susceptibility to P. syringae compared with the wild type, suggesting that vtc1-1 requires functional PAD4, EDS5, and NPR1 for SA biosynthesis and pathogen resistance. We suggest that AA deficiency causes constitutive priming through a buildup of H2O2 that stimulates SA accumulation, conferring enhanced disease resistance in vtc1-1, vtc2-1, and vtc3-1, whereas vtc4-1 might be sensitized to H2O2 and SA production after infection.


Sign in / Sign up

Export Citation Format

Share Document