scholarly journals Transcriptome Integrated with Metabolome Reveals the Molecular Mechanism of Phytoplasma Cherry Phyllody Disease on Stiff Fruit in Chinese Cherry (Cerasus pseudocerasus L.)

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Jihan Li ◽  
Silei Chen ◽  
Weixing Wang ◽  
Chunyan Li

Phytoplasma-infected Chinese cherry (Cerasus pseudocerasus L.) exhibits symptoms of phyllody and stiff fruit. To reveal the molecular mechanism of stiff fruit, the current study integrated transcriptome with metabolome. Results showed that the differentially expressed genes and the differentially accumulated metabolites were related to a high proportion of two aspects: pathogen resistance and signaling or regulatory functions, and the molecular mechanism of stiff fruit that were majorly induced by plant biotic stress response via phytohormones signal transduction, especially signal pathways of salicylic acid, auxin, and abscisic acid. Notably, there was a large overlap between phytoplasma stress response and drought stress response genes. Phytohormone content displayed significant difference that abscisic acid and salicylic acid content of phytoplasma-infected fruit were higher than that of healthy fruit, whereas zeatin, jasmonic acid, and IAA showed the opposite results. In addition, the expression of key candidate genes, including IAA4, IAA9, IAA14, IAA31, ARF5, ARF9, GH3.1, GH3.17, SAUR20, SAUR32, SAUR40, PR1a, PRB1, TGA10, SnRK2.3, and AHK2, was responsible for cherry stiff fruit. In conclusion, the current study contributed a foundation for understanding the molecular mechanism of cherry phyllody disease on stiff fruit, a better understanding of fruit development, and found the potential candidate genes involved in cherry stiff fruit, which could be used for further research in associated fields.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lili Du ◽  
Tianpeng Chang ◽  
Bingxing An ◽  
Mang Liang ◽  
Xinghai Duan ◽  
...  

AbstractWater holding capacity (WHC) is an important sensory attribute that greatly influences meat quality. However, the molecular mechanism that regulates the beef WHC remains to be elucidated. In this study, the longissimus dorsi (LD) muscles of 49 Chinese Simmental beef cattle were measured for meat quality traits and subjected to RNA sequencing. WHC had significant correlation with 35 kg water loss (r = − 0.99, p < 0.01) and IMF content (r = 0.31, p < 0.05), but not with SF (r = − 0.20, p = 0.18) and pH (r = 0.11, p = 0.44). Eight individuals with the highest WHC (H-WHC) and the lowest WHC (L-WHC) were selected for transcriptome analysis. A total of 865 genes were identified as differentially expressed genes (DEGs) between two groups, of which 633 genes were up-regulated and 232 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that DEGs were significantly enriched in 15 GO terms and 96 pathways. Additionally, based on protein–protein interaction (PPI) network, animal QTL database (QTLdb), and relevant literature, the study not only confirmed seven genes (HSPA12A, HSPA13, PPARγ, MYL2, MYPN, TPI, and ATP2A1) influenced WHC in accordance with previous studies, but also identified ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK as the most promising novel candidate genes affecting the WHC. These findings could offer important insight for exploring the molecular mechanism underlying the WHC trait and facilitate the improvement of beef quality.


2021 ◽  
Author(s):  
Lili Du ◽  
Tianpeng Chang ◽  
Bingxing An ◽  
Mang Liang ◽  
Xinghai Duan ◽  
...  

Abstract Water holding capacity (WHC) is an important sensory attribute that greatly influences meat quality. However, the molecular mechanism that regulates the beef WHC remains to be elucidated. In this study, the longissimus dorsi (LD) muscles of 49 Chinese Simmental beef cattle were subjected to RNA sequencing (RNA-seq), among which eight individuals with the highest WHC (H-WHC) and the lowest WHC (L-WHC) were selected for transcriptome analysis. A total of 1256 genes were identified as differentially expressed genes (DEGs) between two groups, of which 948 genes were up-regulated and 308 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that DEGs were significantly enriched in 24 GO terms and 78 pathways. Additionally, based on protein-protein interaction (PPI) network, animal QTL database (QTLdb), and relevant literature, the study not only confirmed seven genes (HSPA12A, HSPA13, PPARg, MYH10, MYL2, MYPN, and TPI1) influenced WHC in accordance with previous studies, but also identified six genes (ITGAV, FGF2, THBS1, DCN, COL4A1, and TGFBR1) as the most promising novel candidate genes affecting the WHC. These findings could offer important insight for exploring the molecular mechanism underlying the WHC trait and facilitate the improvement of beef quality.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 119
Author(s):  
Chioma Oringanje ◽  
Lillian R. Delacruz ◽  
Yunan Han ◽  
Shirley Luckhart ◽  
Michael A. Riehle

Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raju Bheemanahalli ◽  
Montana Knight ◽  
Cherryl Quinones ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

AbstractHigh night temperatures (HNT) are shown to significantly reduce rice (Oryza sativa L.) yield and quality. A better understanding of the genetic architecture of HNT tolerance will help rice breeders to develop varieties adapted to future warmer climates. In this study, a diverse indica rice panel displayed a wide range of phenotypic variability in yield and quality traits under control night (24 °C) and higher night (29 °C) temperatures. Genome-wide association analysis revealed 38 genetic loci associated across treatments (18 for control and 20 for HNT). Nineteen loci were detected with the relative changes in the traits between control and HNT. Positive phenotypic correlations and co-located genetic loci with previously cloned grain size genes revealed common genetic regulation between control and HNT, particularly grain size. Network-based predictive models prioritized 20 causal genes at the genetic loci based on known gene/s expression under HNT in rice. Our study provides important insights for future candidate gene validation and molecular marker development to enhance HNT tolerance in rice. Integrated physiological, genomic, and gene network-informed approaches indicate that the candidate genes for stay-green trait may be relevant to minimizing HNT-induced yield and quality losses during grain filling in rice by optimizing source-sink relationships.


Sign in / Sign up

Export Citation Format

Share Document