Quantitative analysis of calcite and Mg-calcite by X-ray diffraction: effect of grinding on peak height and peak area

Sedimentology ◽  
1973 ◽  
Vol 20 (3) ◽  
pp. 437-444 ◽  
Author(s):  
ELIEZER GAVISH ◽  
GERALD M. FRIEDMAN
2018 ◽  
Vol 6 (2) ◽  
pp. 171
Author(s):  
Ruliana Febrianti ◽  
Firda Herlina ◽  
Muhammad Saukani

At least 13 million tons of kaolin claystone lie in several regencies of South Kalimantan covering Banjar, Tapin, Hulu Sungai Utara and Kotabaru regencies. This paper reports an attempt to explore their crystalline state characteristics, projecting their potential use for geopolymer. Sungai Tabuk, Cintapuri and Tatakan, due to their largest kaolin claystone deposits, were chosen as the sampling sites. The kaolin samples were prepared by syphoning method prior to X-ray diffraction (XRD) characterizations in determining their crystalline phases. X’Pert HighScore Plus and Rietica software were respectively responsible for the qualitative and quantitative phase analyses. The qualitative analysis used search and match method at peak position and peak height between measured and calculated diffraction patterns. Our study revealed the existence of two main phases in the sample, i.e. quartz (SiO2) and kaolinite (Al2Si2O5(OH)4). In addition, the Quantitative analysis used the Rietveld method with the least squares method approach. Rietveld refinement was based on a goodness of fit score of less than 4% by minimizing the difference in the character of the diffraction pattern (position, height, width and peak shape) between the observed and the calculated XRD patterns. The Rietveld quantitative analysis shows, Tatakan is an area with kaolinite-richest deposit (±84%), followed by Cintapuri (±76%) and Tabuk (±70%); quartz is found in reverse.


Author(s):  
T. Tanji ◽  
K. Yada

Analytical electron microscopy with energy dispersive x-ray analyzer (EDX) has been value for the elemental analysis. It has an advantage to be able to analyze the very narrow area of the specimen and is used often for the study of localization of the components. In the case of the quantitative analysis of bulky specimens theoretical approximations for the absorption effect and the fluorescent excitation have been almost established. For thin film specimens spectra obtained by TEM or STEM have only to be corrected on the effect of atomic number (Thin Film Approximation), although for more accurate analysis and for the thickish specimen above-mentioned two effects which, strongly depend on the thickness have to be taken into account. Some reports have shown good agreement with the results of quantitative analysis by EDX and that of chemical analysis, whereas it is observed sometimes that the results obtained are distributed more than several atomic percent.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 293-298
Author(s):  
Urszula Zagórska ◽  
◽  
Sylwia Kowalska ◽  

The analysis of mineralogical composition by quantitative X-ray diffraction (QXRD) is one of the standard research methods used in hydrocarbon exploration. In order to improve it and to obtain better results, the methodology of quantitative analysis used at Well Logging Department is being periodically (more or less) modified. After the introduction of the improvements, comparative analyses were performed on archival samples. Reflections from an unidentified phase which did not occur in the tested Rotliegend sandstone samples were noticed on X-ray diffractograms of archival samples. Reflections of a mineral called simonkolleite were identified in the X-ray diffraction database. Chemically it is a hydrated zinc chloride of the formula: Zn5Cl2(OH)8 × H2O. Analysis of the composition of samples in which simonkolleite crystallised, indicated that the mineral is being formed in the result of the slow reaction of zinc oxide with halite (NaCl) and water vapour. An attempt was made to determine the influence of the presence of this mineral on the results of the quantitative analysis of mineralogical composition. The above methodology was applied on a group of ten samples. The results of the quantitative analysis conducted for archival samples stored with added zincite standard containing simonkolleite and for new, freshly grinded (without artifact) samples were compared. The comparison of the obtained results showed a slight influence of this mineral on the quantitative composition of the remaining components. The difference between the results usually did not exceed the method error. At the same time a significant difference in the calculated content of the internal standard was noted – on average 1% less in archival than in new samples. This shows that the reaction occurring in the archival samples will affect the evaluation of the quality of the obtained quantitative analysis, at the same time excluding the possibility of determining the rock’s amorphous substance content with the internal standard method.


1985 ◽  
Vol 49 (352) ◽  
pp. 393-400 ◽  
Author(s):  
P. H. Nadeau ◽  
M. J. Wilson ◽  
W. J. McHardy ◽  
J. M. Tait

AbstractDiagenetic illitic clays from seven North American bentonites of Ordovician, Devonian, and Cretaceous ages and from three subsurface North Sea sandstones of Permian and Jurassic ages have been examined by X-ray diffraction (XRD) and transmission and scanning electron microscopy (TEM and SEM). XRD indicates that the clays from the bentonites are randomly and regularly interstratified illite/smectites (I/S) with 30–90% illite layers, whereas the clays from the Jurassic and Permian sandstones are regularly interstratified I/S, with 80–90% illite layers, and illite respectively. TEM of shadowed materials shows that randomly interstratified I/S consists primarily of mixtures of elementary smectite and ‘illite’ particles (10 and 20Å thick respectively) and that regularly interstratified I/S and illite consist mainly of ‘illite’ particles 20–50 Å thick and > 50 Å thick respectively. Regularly interstratified I/S from bentonites and sandstones are similar with regard to XRD character and particle thickness distribution. These observations can be rationalized if the interstratified XRD character arises from an interparticle diffraction effect, where the smectite interlayers perceived by XRD, result from adsorption of exchangeable cations and water or organic molecules at the interfaces of particles generally < 50Å thick. A neoformation mechanism is proposed by which smectite is converted to illite with increasing depth of burial in sedimentary rocks, based on dissolution of smectite particles and the precipitation/growth of ‘illite’ particles occurring within a population of thin phyllosilicate crystals.


2008 ◽  
Vol 452 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Qiuguo Xiao ◽  
Ling Huang ◽  
Hui Ma ◽  
Xinhua Zhao

Author(s):  
Rajni Bhardwaj ◽  
Smita Johar ◽  
Amit Kapila ◽  
Amandeep Sharma

Swarnamakshika is grouped under Updhatu of Swarna and is composed of Copper, Iron and Sulphur. In this study Swarnamakshika was subjected to Shodhana by Bharjana with Nimbuka swarasa and Shudha Swarnamakshika was given Bhavana with Nimbuka swarasa and subjected to Varahaputa. With ten Varahaputa Bhasma Siddhi Lakshanas were attained swarnamakshika Marana was done by using Nimbuka swarasa until bhasma siddi lakshanas found and it took 10 puta till it attained reddish brown color. The X-ray diffraction analysis showed that d-identified peaks after 10th puta Swarnamakshika bhasma composition is of Iron oxide with rhombohedral crystal system as main component. EDX analysis of Swarna makshika bhasma shows that it contains Iron and Oxygen, as major element and Copper, Sulphur, Carbon, Aluminium, Calcium etc. as minor elements. FESEM study revealed that the particle size of Ashudha and Shudha Swarnamakshika was in the range of 500 nm-3nm. Keywords: Swarnamakshika Bhasma, Nimbuka swarasa, puta


Sign in / Sign up

Export Citation Format

Share Document