scholarly journals HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination

2005 ◽  
Vol 45 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Ignacio Rubio-Somoza ◽  
Manuel Martinez ◽  
Isabel Diaz ◽  
Pilar Carbonero
2005 ◽  
Vol 388 (2) ◽  
pp. 697-703 ◽  
Author(s):  
Aaron PALOMINO ◽  
Pilar HERRERO ◽  
Fernando MORENO

Expression of HXK2, a gene encoding a Saccharomyces cerevisiae bifunctional protein with catalytic and regulatory functions, is controlled by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are low. In the present study, we identified Rgt1 as a transcription factor that, together with the Med8 protein, is essential for repression of the HXK2 gene in the absence of glucose. Rgt1 represses HXK2 expression by binding specifically to the motif (CGGAAAA) located at −395 bp relative to the ATG translation start codon in the HXK2 promoter. Disruption of the RGT1 gene causes an 18-fold increase in the level of HXK2 transcript in the absence of glucose. Rgt1 binds to the RGT1 element of HXK2 promoter in a glucose-dependent manner, and the repression of target gene depends on binding of Rgt1 to DNA. The physiological significance of the connection between two glucose-signalling pathways, the Snf3/Rgt2 that causes glucose induction and the Mig1/Hxk2 that causes glucose repression, was also analysed.


2020 ◽  
Author(s):  
Deirdre Khan ◽  
Dylan J. Ziegler ◽  
Jenna L. Kalichuk ◽  
Vanessa Hoi ◽  
Nina Hyunh ◽  
...  

AbstractWe profiled the gene regulatory landscape of Brassica napus reproductive development using RNA sequencing. Comparative analysis of this nascent amphidiploid across the plant lifecycle revealed the contribution of each subgenome to plant reproduction. Global mRNA profiling revealed lower accumulation of Cn subgenome transcripts relative to the An subgenome. Subgenome-specific transcriptional networks identified distinct transcription factor families enriched in each of the An and Cn subgenome early in seed development. Global gene expression profiling of laser-microdissected seed subregions further reveal subgenome expression dynamics in the embryo, endosperm, and seed coat of early stage seeds. Transcription factors predicted to be regulators encoded by the An subgenome are expressed primarily in the seed coat whereas regulators encoded by the Cn subgenome were expressed primarily in the embryo. Data suggest subgenome bias are characteristic features of the B. napus seed throughout development, and that such bias might not be universal across the embryo, endosperm, and seed coat of the developing seed. Whole genome transcription factor networks identified BZIP11 as a transcriptional regulator of early B. napus seed development. Knockdown of BZIP11 using RNA interference resulted in a similar reduction in gene activity of predicted gene targets, and a reproductive-lethal phenotype. Taken together, transcriptional networks spanning both the An and Cn genomes of the B. napus seed can identify valuable targets for seed development research and that-omics level approaches to studying gene regulation in B. napus can benefit from both broad and high-resolution analyses.One Sentence SummaryGlobal RNA sequencing coupled with laser microdissection provides a critical resource to study subgenome bias in whole seeds and specific tissues of polyploid plants.


2018 ◽  
Author(s):  
Min Chen ◽  
Jer-Young Lin ◽  
Jungim Hur ◽  
Julie M. Pelletier ◽  
Russell Baden ◽  
...  

AbstractThe precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators, such as ABI3 and FUS3, are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes, and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from post-fertilization through dormancy and germination for regions that contain < 5% or < 0.4% bulk methylation in CG-, CHG-, and CHH-contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5 to 76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor genes, and other developmental genes, that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue - and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development - probably by the action of specific transcription factors and epigenetic events at the chromatin level.SignificanceWe scanned soybean and Arabidopsis seed genomes for hypomethylated regions, or DNA Methylation Valleys (DMVs), present in mammalian cells. A significant fraction of seed genomes contain DMV regions that have < 5% bulk DNA methylation, or, in many cases, no detectable DNA methylation. Methylation levels of seed DMVs do not vary detectably during seed development with respect to time, region, and tissue, and are present prior to fertilization. Seed DMVs are enriched in transcription factor genes and other genes critical for seed development, and are also decorated with histone marks that fluctuate with developmental stage, resembling in significant ways their animal counterparts. We conclude that many genes playing important roles in seed formation are regulated in the absence of detectable DNA methylation events, and suggest that selective action of transcriptional activators and repressors, as well as chromatin epigenetic events play important roles in making a seed - particularly embryo formation.


2019 ◽  
Vol 61 (5) ◽  
pp. 564-580 ◽  
Author(s):  
Leonardo Jo ◽  
Julie M. Pelletier ◽  
John J. Harada

2017 ◽  
Vol 114 (32) ◽  
pp. E6710-E6719 ◽  
Author(s):  
Julie M. Pelletier ◽  
Raymond W. Kwong ◽  
Soomin Park ◽  
Brandon H. Le ◽  
Russell Baden ◽  
...  

LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta. Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged ∼92 Mya.


2020 ◽  
Vol 141 (1) ◽  
pp. 105-118
Author(s):  
Xiaomeng Sun ◽  
Songlin Zhang ◽  
Xingmei Li ◽  
Xiuming Zhang ◽  
Xianhang Wang ◽  
...  

Author(s):  
Chen Luo ◽  
Shenglin Wang ◽  
Kang Ning ◽  
Zijing Chen ◽  
Yixin Wang ◽  
...  

Abstract Seeds are major vehicles of propagation and dispersal in plants. A number of transcription factors, including APETALA2 (AP2), play crucial roles during the seed development process in various plant species. However, genes essential for seed development and the regulatory networks during seed development remain unclear in lettuce. Here, we identified a lettuce AP2 (LsAP2) gene that was highly expressed at the early stages of seed development. LsAP2 knockout plants obtained by the CRISPR/Cas9 system were used to explore the biological function of LsAP2. Compared with wild-type, the seeds of the Lsap2 mutant plants had increased length and decreased width, and developed an extended tip at the seed top. After further investigating the seed structural characteristics of Lsap2 mutant plants, we proposed a new function of LsAP2 in seed dispersal. Moreover, we identified several interactors of LsAP2. Our results showed that LsAP2 directly interacted with the lettuce homolog of BREVIPEDICELLUS (LsBP) and promoted the expression of LsBP. Transcriptome analysis revealed that LsAP2 might also be involved in brassinosteroid biosynthesis and signaling pathways. Taken together, our data indicate that LsAP2 has a significant function in regulating seed shape in lettuce.


Sign in / Sign up

Export Citation Format

Share Document