Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis

2011 ◽  
Vol 69 (3) ◽  
pp. 432-444 ◽  
Author(s):  
Wei Hua ◽  
Rong-Jun Li ◽  
Gao-Miao Zhan ◽  
Jing Liu ◽  
Jun Li ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179027 ◽  
Author(s):  
Ke-Lin Huang ◽  
Mei-Li Zhang ◽  
Guang-Jing Ma ◽  
Huan Wu ◽  
Xiao-Ming Wu ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1033
Author(s):  
Abirami Rajavel ◽  
Selina Klees ◽  
Johanna-Sophie Schlüter ◽  
Hendrik Bertram ◽  
Kun Lu ◽  
...  

Transcription factors (TFs) and their complex interplay are essential for directing specific genetic programs, such as responses to environmental stresses, tissue development, or cell differentiation by regulating gene expression. Knowledge regarding TF–TF cooperations could be promising in gaining insight into the developmental switches between the cultivars of Brassica napus L., namely Zhongshuang11 (ZS11), a double-low accession with high-oil- content, and Zhongyou821 (ZY821), a double-high accession with low-oil-content. In this regard, we analysed a time series RNA-seq data set of seed tissue from both of the cultivars by mainly focusing on the monotonically expressed genes (MEGs). The consideration of the MEGs enables the capturing of multi-stage progression processes that are orchestrated by the cooperative TFs and, thus, facilitates the understanding of the molecular mechanisms determining seed oil content. Our findings show that TF families, such as NAC, MYB, DOF, GATA, and HD-ZIP are highly involved in the seed developmental process. Particularly, their preferential partner choices as well as changes in their gene expression profiles seem to be strongly associated with the differentiation of the oil content between the two cultivars. These findings are essential in enhancing our understanding of the genetic programs in both cultivars and developing novel hypotheses for further experimental studies.


2020 ◽  
Vol 104 (5) ◽  
pp. 1410-1422
Author(s):  
Shan Tang ◽  
Dong‐Xu Liu ◽  
Shaoping Lu ◽  
Liangqian Yu ◽  
Yuqing Li ◽  
...  

Heredity ◽  
2003 ◽  
Vol 90 (1) ◽  
pp. 39-48 ◽  
Author(s):  
M J Burns ◽  
S R Barnes ◽  
J G Bowman ◽  
M H E Clarke ◽  
C P Werner ◽  
...  

2019 ◽  
Vol 12 (4) ◽  
pp. 582-596 ◽  
Author(s):  
Jun Liu ◽  
Wanjun Hao ◽  
Jing Liu ◽  
Shihang Fan ◽  
Wei Zhao ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1982 ◽  
Author(s):  
Muhammad Shahid ◽  
Guangqin Cai ◽  
Feng Zu ◽  
Qing Zhao ◽  
Muhammad Uzair Qasim ◽  
...  

Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties. Rapeseed (Brassica napus) is one of the most important oil crops cultivated on multiple continents, contributing more than 15% of the world’s edible oil supply. To understand the phasic nature of oil biosynthesis and the dynamic regulation of key pathways for effective oil accumulation in B. napus, comparative transcriptomic profiling was performed with developing seeds and silique wall (SW) tissues of two contrasting inbred lines with ~13% difference in seed oil content. Differentially expressed genes (DEGs) between high- and low-oil content lines were identified across six key developmental stages, and gene enrichment analysis revealed that genes related to photosynthesis, metabolism, carbohydrates, lipids, phytohormones, transporters, and triacylglycerol and fatty acid synthesis tended to be upregulated in the high-oil-content line. Differentially regulated DEG patterns were revealed for the control of metabolite and photosynthate production in SW and oil biosynthesis and accumulation in seeds. Quantitative assays of carbohydrates and hormones during seed development together with gene expression profiling of relevant pathways revealed their fundamental effects on effective oil accumulation. Our results thus provide insights into the molecular basis of high seed oil content (SOC) and a new direction for developing high-SOC rapeseed and other oil crops.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haoyi Wang ◽  
Qian Wang ◽  
Haksong Pak ◽  
Tao Yan ◽  
Mingxun Chen ◽  
...  

Abstract Background Rapeseed (Brassica napus L.) is an important oil crop world-widely cultivated, and seed oil content (SOC) is one of the most important traits for rapeseed. To increase SOC, many efforts for promoting the function of genes on lipid biosynthesis pathway have been previously made. However, seed oil formation is a dynamic balance between lipid synthesis and breakdown. It is, therefore, also reasonable to weaken or eliminate the function of genes involved in lipid degradation for a higher final SOC. Results We applied a genome-wide association study (GWAS) on SOC in a collection of 290 core germplasm accessions. A total of 2,705,480 high-quality SNPs were used in the GWAS, and we identified BnaC07g30920D, a patatin-like lipase (PTL) gene, that was associated with SOC. In particular, six single-nucleotide-polymorphisms (SNPs) in the promoter region of BnaC07g30920D were associated with the significant reduction of SOC, leading to a 4.7–6.2% reduction of SOCs. We performed in silico analysis to show a total of 40 PTLs, which were divided into four clades, evenly distributed on the A and C subgenomes of Brassica napus. RNA-seq analysis unveiled that BnPTLs were preferentially expressed in reproductive tissues especially maturing seeds. Conclusions We identified BnaC07g30920D, a BnPTL gene, that was associated with SOC using GWAS and performed in silico analysis of 40 PTLs in Brassica napus. The results enrich our knowledge about the SOC formation in rapeseed and facilitate the future study in functional characterization of BnPTL genes.


Plant Science ◽  
2016 ◽  
Vol 252 ◽  
pp. 388-399 ◽  
Author(s):  
Fengming Sun ◽  
Jing Liu ◽  
Wei Hua ◽  
Xingchao Sun ◽  
Xinfa Wang ◽  
...  

1993 ◽  
Vol 73 (1) ◽  
pp. 189-191 ◽  
Author(s):  
G. Rakow ◽  
R. K. Downey

Tribute summer rape (Brassica napus L.), registered in 1985, is a triazine-tolerant, canola-quality cultivar. It is early maturing and produces seed with low seed chlorophyll content. Tribute has yield and seed oil content similar to other triazine-tolerant cultivars such as OAC Triton. Tribute is better adapted than OAC Triton to the B. napus growing areas of western Canada because of its earlier maturity. However, it should not be planted on fields which have a history of heavy blackleg infestations. Key words: Rape (summer), triazine-tolerant, cultivar description


Sign in / Sign up

Export Citation Format

Share Document