A target-site mutation is present in a glyphosate-resistant Lolium rigidum population

Weed Research ◽  
2006 ◽  
Vol 46 (5) ◽  
pp. 432-440 ◽  
Author(s):  
AM WAKELIN ◽  
C PRESTON
Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Yazid Bostamam ◽  
Jenna M. Malone ◽  
Fleur C. Dolman ◽  
Peter Boutsalis ◽  
Christopher Preston

Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-fold resistance to glyphosate in dose-response studies. These resistance levels were higher than two previously well-characterized glyphosate-resistant populations of rigid ryegrass (SLR77 and NLR70), containing a modified target site or reduced translocation, respectively. Populations SLR80 and SLR88 accumulated less glyphosate, 12 and 17% of absorbed glyphosate, in the shoot in the resistant populations compared with 26% in the susceptible population. In addition, a mutation within the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) where Pro106had been substituted by either serine or threonine was identified. These two populations are more highly resistant to glyphosate as a consequence of expressing two different resistance mechanisms concurrently.


2019 ◽  
Author(s):  
Walter Fabricio Silva Martins ◽  
Craig Stephen Wilding ◽  
Alison Taylor Isaacs ◽  
Emily Joy Rippon ◽  
Karine Megy ◽  
...  

ABSTRACTCulex quinquefasciatusplays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackleC. quinquefasciatusvectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, includingC. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistantC. quinquefasciatuswas explored to identify candidate genes associated with insecticide resistance. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1h exposure and 58.02% after 4h. Genotyping of the G119SAce-1target site mutation detected a highly significant association (p<0.0001; OR=25) between resistance andAce1-119S. However, synergist assays using the P450 inhibitor PBO or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450Cyp6z18showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb-resistance in UgandanC. quinquefasciatusis mediated by both target-site mechanisms and over-expression of detoxification enzymes.


Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 537-544 ◽  
Author(s):  
Wolfram Köller ◽  
D. M. Parker ◽  
W. W. Turechek ◽  
Cruz Avila-Adame ◽  
Keith Cronshaw

The class of fungicides acting as respiration inhibitors by binding to the Qo center of cyto-chrome b (QoIs) are in wide use for the management of apple scab caused by Venturia inaequalis. In order to assess responses of V. inaequalis populations to treatments with QoIs, sensitivities of isolates were determined for germinating conidia or for mycelial colonies developing from germinating conidia. Under both test conditions, inhibitory potencies of kresoxim-methyl and trifloxystrobin were largely equivalent. V. inaequalis populations treated with QoIs in a commercial and an experimental orchard both responded with significant shifts toward declining QoI sensitivities. However, the population responses were quantitative in nature, and highly resistant isolates indicative of a cytochrome b target site mutation were not detected. V. inaequalis populations from both orchards investigated also were fully resistant to sterol de-methylation-inhibiting fungicides (DMIs) such as fenarimol and myclobutanil, but isolate sensitivities to QoIs and DMIs were largely unrelated. Performance tests with kresoxim-methyl and trifloxystrobin at the experimental orchard diagnosed as DMI-resistant revealed that the quantitative shift toward declining QoI sensitivities did not constitute the status of practical QoI resistance. In contrast to these quantitative responses, emergence of qualitative QoI resistance was documented for V. inaequalis in an orchard in North Germany, which had been treated intensively with a total of 25 QoI applications over four consecutive seasons. Isolates retrieved from the orchard were highly resistant to both kresoxim-methyl and trifloxystrobin and were characterized as G143A cytochrome b mutants. The results indicated that the paths of QoI resistance can be both quantitative and qualitative in nature. A similar phenomenon has not been described before. Circumstantial evidence suggests that the quantitative phase of V. inaequalis population responses to QoIs might be succeeded by a quantitative selection of highly resistant G143A target-site mutants.


2012 ◽  
Vol 30 (3) ◽  
pp. 675-681 ◽  
Author(s):  
M.D. Osuna ◽  
I.C.G.R. Goulart ◽  
R.A. Vidal ◽  
A. Kalsing ◽  
J.P. Ruiz Santaella ◽  
...  

Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.


2012 ◽  
Vol 68 (9) ◽  
pp. 1248-1254 ◽  
Author(s):  
Wilson V Avila-Garcia ◽  
Elena Sanchez-Olguin ◽  
Andrew G Hulting ◽  
Carol Mallory-Smith

2019 ◽  
Vol 76 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Debora Boaventura ◽  
Anderson Bolzan ◽  
Fernando EO Padovez ◽  
Daniela M Okuma ◽  
Celso Omoto ◽  
...  

Weed Science ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Hugh J. Beckie ◽  
Suzanne I. Warwick ◽  
Connie A. Sauder

Wild oat is the second-most abundant, but most economically important, weed across the Canadian Prairies of western Canada. Despite the serious economic effects of resistance to acetyl-CoA carboxylase (ACC) or acetolactate synthase (ALS) inhibitors or both in this weed throughout the Northern Great Plains of North America, little research has examined the basis for herbicide resistance. We investigated target-site and nontarget-site mechanisms conferring ACC- and ALS-inhibitor resistance in 16 wild oat populations from across western Canada (four ACC-inhibitor resistant, four ALS-inhibitor resistant, and eight ACC- and ALS-inhibitor resistant). TheACC1mutations were found in 8 of the 12 ACC inhibitor-resistant populations. The Ile1781Leu mutation was detected in three populations, the Trp2027Cys and Asp2078Gly mutations were in two populations each, and the Trp1999Cys, Ile2041Asn, Cys2088Arg, and Gly2096Ser substitutions were in one population each. Three populations had twoACC1mutations. Only 2 of the 12 ALS inhibitor-resistant populations had anALStarget-site mutation—Ser653Thr and Ser653Asn substitutions. This is the first global report ofALStarget-site mutations inAvenaspp. and four previously undocumentedACC1mutations in wild oat. Based on these molecular analyses, seedlings of five ACC + ALS inhibitor-resistant populations (one with anACC1mutation; four with noACCorALSmutations) were treated with malathion, a known cytochrome P450 monooxygenase inhibitor, followed by application of one of four ACC- or ALS-inhibiting herbicides. Malathion treatment often resulted in control or suppression of these populations, suggesting involvement of this enzyme system in contributing to resistance to both ACC and ALS inhibitors.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266
Author(s):  
Het Samir Desai ◽  
Michael Thompson ◽  
Bhagirath Singh Chauhan

Due to the overdependence on glyphosate to manage weeds in fallow conditions, glyphosate resistance has developed in various biotypes of several grass weeds, including Chloris virgata Sw. The first case of glyphosate resistance in C. virgata was found in 2015 in Australia, and since then several cases have been confirmed in several biotypes across Australia. Pot studies were conducted with 10 biotypes of C. virgata to determine glyphosate resistance levels. The biotypes were identified as either susceptible, moderately resistant or highly resistant based on the glyphosate dose required to kill 50% of plants. Two glyphosate-susceptible (GS) and two glyphosate-resistant (GR) biotypes were identified by the dose-response study and analyzed for the presence of target-site mutation in the 5–enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. Performance of alternative herbicides to glyphosate as well as the double-knock herbicide approach was evaluated on the two GS (Ch and SGM2) and two GR (SGW2 and CP2) biotypes. Three herbicides, clethodim, haloxyfop and paraquat, were found to be effective (100% control) against all four biotypes when applied at the 4–5 leaf stage. All the sequential herbicide treatments, such as glyphosate followed by paraquat and glufosinate-ammonium followed by paraquat, provided 100% control of all four biotypes of C. virgata. This study identified effective herbicide options for the control of GR C. virgata and showed that target-site mutations were involved in the resistance of two biotypes to glyphosate (SGW2 and CP2). Results could aid farmers in selecting herbicides to manage C. virgata in their fields.


Sign in / Sign up

Export Citation Format

Share Document