scholarly journals Pollen Expression of Herbicide Target Site Resistance Genes in Annual Ryegrass (Lolium rigidum)

1993 ◽  
Vol 102 (3) ◽  
pp. 1037-1041 ◽  
Author(s):  
J. Richter ◽  
S. B. Powles
2021 ◽  
Author(s):  
Jinyi Chen ◽  
Qin Yu ◽  
Mechelle Owen ◽  
Heping Han ◽  
Eric Patterson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinyi Chen ◽  
Qin Yu ◽  
Eric Patterson ◽  
Chad Sayer ◽  
Stephen Powles

Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species (e.g., Eleusine indica, Setaria viridis, and recently in Lolium rigidum). Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation. The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joel Torra ◽  
José María Montull ◽  
Andreu Taberner ◽  
Nawaporn Onkokesung ◽  
Neil Boonham ◽  
...  

Lolium rigidum is one the worst herbicide resistant (HR) weeds worldwide due to its proneness to evolve multiple and cross resistance to several sites of action (SoA). In winter cereals crops in Spain, resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has become widespread, with farmers having to rely on pre-emergence herbicides over the last two decades to maintain weed control. Recently, lack of control with very long-chain fatty acid synthesis (VLCFAS)-inhibiting herbicides has been reported in HR populations that are difficult to manage by chemical means. In this study, three Spanish populations of L. rigidum from winter cereals were confirmed as being resistant to ALS- and ACCase-inhibiting herbicides, with broad-ranging resistance toward the different chemistries tested. In addition, reduced sensitivity to photosystem II-, VLCFAS-, and phytoene desaturase-inhibiting herbicides were confirmed across the three populations. Resistance to ACCase-inhibiting herbicides was associated with point mutations in positions Trp-2027 and Asp-2078 of the enzyme conferring target site resistance (TSR), while none were detected in the ALS enzyme. Additionally, HR populations contained enhanced amounts of an ortholog of the glutathione transferase phi (F) class 1 (GSTF1) protein, a functional biomarker of non-target-site resistance (NTSR), as confirmed by enzyme-linked immunosorbent assays. Further evidence of NTSR was obtained in dose-response experiments with prosulfocarb applied post-emergence, following pre-treatment with the cytochrome P450 monooxygenase inhibitor malathion, which partially reversed resistance. This study confirms the evolution of multiple and cross resistance to ALS- and ACCase inhibiting herbicides in L. rigidum from Spain by mechanisms consistent with the presence of both TSR and NTSR. Moreover, the results suggest that NTSR, probably by means of enhanced metabolism involving more than one detoxifying enzyme family, confers cross resistance to other SoA. The study further demonstrates the urgent need to monitor and prevent the further evolution of herbicide resistance in L. rigidum in Mediterranean areas.


2003 ◽  
Vol 59 (2) ◽  
pp. 190-201 ◽  
Author(s):  
Stephen R Moss ◽  
Kay M Cocker ◽  
Amanda C Brown ◽  
Linda Hall ◽  
Linda M Field

Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 968-975 ◽  
Author(s):  
Robert S. Gallagher ◽  
Kathryn J. Steadman ◽  
Andrew D. Crawford

The effect of hydration (priming) treatment on dormancy release in annual ryegrass seeds from two populations was investigated. Hydration duration, number, and timing with respect to after-ripening were compared in an experiment involving 15 treatment regimens for 12 wk. Seeds were hydrated at 100% relative humidity for 0, 2, or 10 d at Weeks 1, 6, or 12 of after-ripening. Dormancy status was assessed after each hydration treatment by measuring seed germination at 12-hourly alternating 25/15 C (light/dark) periods using seeds directly from the hydration treatment and seeds subjected to 4 d postpriming desiccation. Seeds exposed to one or more hydration events during the 12 wk were less dormant than seeds that remained dry throughout after-ripening. The longer hydration of 10 d promoted greater dormancy loss than either a 2-d hydration or no hydration. For the seed lot that was most dormant at the start of the experiment, two or three rather than one hydration event or a hydration event earlier rather than later during after-ripening promoted greater dormancy release. These effects were not significant for the less-dormant seed lot. For both seed lots, the effect of a single hydration for 2 d at Week 1 or 6 of after-ripening was not manifested until the test at Week 12 of the experiment, suggesting that the hydration events alter the rate of dormancy release during subsequent after-ripening. A hydrothermal priming time model, usually used for modeling the effect of priming on germination rate of nondormant seeds, was successfully applied to dormancy release resulting from the hydration treatments.


2002 ◽  
Vol 42 (2) ◽  
pp. 111 ◽  
Author(s):  
R. Stanton ◽  
J. Piltz ◽  
J. Pratley ◽  
A. Kaiser ◽  
D. Hudson ◽  
...  

A trial was conducted to investigate the survival and digestibility of annual ryegrass (ARG) seed (Lolium rigidum L.) eaten by sheep and cattle. Sheep (n= 8) and cattle (n = 8) were fed a basal diet containing 1:1 lucerne chaff:oaten chaff with (ARG) or without (control) the inclusion of 20% total dry matter of annual ryegrass seed in a changeover design. Intake was restricted to 17 g/kg liveweight. Digestibility of the control diet was lower (P<0.01) for sheep than cattle. Annual ryegrass seed was present (P<0.01) in the faeces of both sheep and cattle within 24 h of first ingestion. Some 10.8 and 32.8% of seed ingested was excreted by sheep and cattle respectively, with 3.9% (sheep) and 11.9% (cattle) remaining germinable. Annual ryegrass seed continued to be excreted by both sheep and cattle up to 5 days after removal from the diet. Dry matter digestibility of the annual ryegrass diet was 53% in cattle.


1990 ◽  
Vol 94 (3) ◽  
pp. 1180-1186 ◽  
Author(s):  
John M. Matthews ◽  
Joseph A. M. Holtum ◽  
David R. Liljegren ◽  
Barbara Furness ◽  
Stephen B. Powles

1976 ◽  
Vol 27 (6) ◽  
pp. 779 ◽  
Author(s):  
D Gramshaw

Germination of Lolium rigidum seeds, in the light (12 hr day length) and in the dark, was studied at constant and alternating (12/12 hr) temperatures in the range 8–35°C. Seeds had after-ripened for 22 weeks. Different constant temperature optima for germinability were found: 27° in light and 11° in dark. Germinability at alternating temperatures in darkness was determined solely by the minimum temperature of the alternation, and there was no response to thermoperiodicity per se. In contrast, light and alternating temperature appeared to interact to increase germinability, although the highest germinability occurred only when the maximum temperature was close to the optimum constant temperature, i.e. about 27°. Germination in both light and dark was most rapid where either the constant or the average temperature of an alternating regime was between 18 and 29°. Below 18° germination rates decreased markedly, and at 8°, rates were one-third of those at 18°. Seeds germinated more slowly in light than in darkness at all temperatures, but the differences were small relative to the effects of low temperatures.In another study, seeds collected from plants naturalized in eight different localities in the cereal belt of Western Australia and subsequently planted together in two contrasting environments were examined for germinability at 24/12°C in light and dark 18 weeks after harvest. Dark germinability differed between seed sources but not between planting sites, and ranged between 78 and 93%. Exposure of germinating seeds to light substantially alleviated dormancy in seeds from all sources.


Sign in / Sign up

Export Citation Format

Share Document