THEORETICAL DETERMINATION OF THERMODYNAMIC PARAMETERS FOR INCORPORATION OF AMINO ACID RESIDUES IN α-HELIX OF POLY-L-ALANINE. CALCULATION OF PARAMETERS FOR LEUCINE AND ASPARTIC ACID

2009 ◽  
Vol 5 (6) ◽  
pp. 371-379 ◽  
Author(s):  
G. M. Lipkind ◽  
E. M. Popov
2018 ◽  
Vol 52 (3) ◽  
pp. 478-487 ◽  
Author(s):  
D. A. Karasev ◽  
A. V. Veselovsky ◽  
A. A. Lagunin ◽  
D. A. Filimonov ◽  
B. N. Sobolev

Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Mohsen Hanana ◽  
Olivier Cagnac ◽  
Ahmed Mliki ◽  
Eduardo Blumwald

After identifying and isolating a grapevine ( Vitis vinifera L.) NHX vacuolar antiporter and before initializing functional genomic studies, we juged necessary to acquire a minimum of knowledge about the VvNHX1 protein. Thus, we realized a bioinformatic analysis to determine its basic characteristics and to get structural informations that could guide us through the functional characterization. We have determined important physico-chemical parameters (molecular mass, isoelectric point, hydrophobic regions, etc.) and obtained interesting structural data (primary, secondary, and tertiary structures; conserved domains and interaction motives; etc.). The VvNHX1 gene, which encodes this 541 amino-acid protein with a predicted molecular mass of 60 kDa, is made of 14 exons and measures 6.5 kb. The amino-acidic composition of this protein is very important, in particular, for the establishment of the α-helix structure, which represents more than 50% of the protein, but also for charge distribution, which generates critical electrostatic interactions for the ionic flux. The secondary structure of VvNHX1 contains multiple transmembrane α-helix segments that are made of hydrophobic amino-acid residues, thus facilitating its insertion in the membrane. Globally, VvNHX1 has one hydrophobic N-terminal region, made of 10 transmembrane segments with 440 amino-acid residues, and one hydrophilic C-terminal region, made of 100 residues. The region located between the fourth and fifth transmembrane segments represents, with its structure mainly helicoidal and the presence of a favourable electrostatic environment, the pore where cation flux is performed across the membrane. VvNHX1 contains various interaction domains as well as several putative posttranslational modification sites, mainly at the C-terminus but also at the N-terminus, that play an important part in regulating protein activities, influence protein structural stability, or interact with other proteins or signalling molecules.


2003 ◽  
Vol 12 (6) ◽  
pp. 1169-1176 ◽  
Author(s):  
Dmitri N. Ermolenko ◽  
John M. Richardson ◽  
George I. Makhatadze

2015 ◽  
Vol 36 (2) ◽  
pp. 45-50 ◽  
Author(s):  
Shoto ISHIGO ◽  
Eiichi NEGISHI ◽  
Yurika MIYOSHI ◽  
Hirohisa ONIGAHARA ◽  
Masashi MITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document