Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species

2007 ◽  
Vol 131 (3) ◽  
pp. 422-433 ◽  
Author(s):  
Julie C. Naumann ◽  
Donald R. Young ◽  
John E. Anderson
Weed Research ◽  
2016 ◽  
Vol 56 (6) ◽  
pp. 424-433 ◽  
Author(s):  
C J Zhang ◽  
S H Lim ◽  
J W Kim ◽  
G Nah ◽  
A Fischer ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 793
Author(s):  
Juanli Chen ◽  
Xueyong Zhao ◽  
Yaqiu Zhang ◽  
Yuqiang Li ◽  
Yongqing Luo ◽  
...  

Artemisia halodendron is a widely distributed native plant in China’s Horqin sandy land, but few studies have examined its physiological responses to drought and rehydration. To provide more information, we investigated the effects of drought and rehydration on the chlorophyll fluorescence parameters and physiological responses of A. halodendron to reveal the mechanisms responsible for A. halodendron’s tolerance of drought stress and the resulting ability to tolerate drought. We found that A. halodendron had strong drought resistance. Its chlorophyll content first increased and then decreased with prolonged drought. Variable chlorophyll fluorescence (Fv) and quantum efficiency of photosystem II (Fv/Fm) decreased, and the membrane permeability and malondialdehyde increased. When plants were subjected to drought stress, superoxide dismutase (SOD) activity degraded under severe drought, but the activities of peroxidase (POD) and catalase (CAT) and the contents of soluble proteins, soluble sugars, and free proline increased. Severe drought caused wilting of A. halodendron leaves and the leaves failed to recover even after rehydration. After rehydration, the chlorophyll content, membrane permeability, SOD and CAT activities, and the contents of the three osmoregulatory substances under moderate drought began to recover. However, Fv, Fv/Fm, malondialdehyde, and POD activity did not recover under severe drought. These results illustrated that drought tolerance of A. halodendron resulted from increased enzyme (POD and CAT) activities and accumulation of osmoregulatory substances.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1882-1887 ◽  
Author(s):  
Diane Feliciano Cayanan ◽  
Youbin Zheng ◽  
Ping Zhang ◽  
Tom Graham ◽  
Mike Dixon ◽  
...  

Phytotoxic responses of five container-grown nursery species (Spiraea japonica ‘Goldmound’, Hydrangea paniculata ‘Grandiflora’, Weigela florida ‘Alexandra’, Physocarpus opulifolius ‘Summer Wine’, and Salix integra ‘Hakura Nishiki’) to chlorinated irrigation water and critical free chlorine thresholds were evaluated. Plants were overhead-irrigated with water containing 0, 2.5, 5, 10, and 20 mg·L−1 of free chlorine for 6 weeks. The following measurements were used to assess the treatments: visual injury, growth, leaf chlorophyll content index, leaf chlorophyll fluorescence, leaf net CO2 exchange rate, and stomatal conductance. All species exhibited one or more signs of chlorine injury, including foliar necrotic mottling, foliar necrosis and chlorosis, decreased plant height, and increased premature abscission of foliage with species varying in sensitivity to free chlorine concentrations of irrigation water. The results indicated that the critical free chlorine threshold of S. japonica, H. paniculata, W. florida, and S. integra was 2.5 mg·L−1 and 5 mg·L−1 for P. opulifolius. Our results suggested that irrigation water containing free chlorine less than 2.5 mg·L−1 should not adversely affect the growth or appearance of ornamental woody shrubs.


Author(s):  
Zhangxiong Han ◽  
Xuan Wei ◽  
Dejun Wan ◽  
Wenxiang He ◽  
Xijie Wang ◽  
...  

This study investigated the beneficial effect of molybdenum (Mo) application on rape plants (Brassica napus L.) grown in a soil polluted by cadmium (Cd). A pot experiment was conducted to determine how different concentrations of exogenous Mo (0, 50, 100, and 200 mg/kg) affect plant physiology, biomass, photosynthesis, cation uptake, and Cd translocation and enrichment in rape plants under Cd stress (0.5 and 6.0 mg/kg). Under single Cd treatment, plant physiological and biochemical parameters, biomass parameters, leaf chlorophyll fluorescence parameters, and macroelement uptake of rape plants decreased, while their malonaldehyde content, proline content, non-photochemical quenching coefficient, and Cd uptake significantly increased, compared to those of the control group (p-values < 0.05). High-Cd treatment resulted in much larger changes in these parameters than low-Cd treatment. Following Mo application, the accumulation of malondialdehyde and proline decreased in the leaves of Cd-stressed plants; reversely, the contents of soluble protein, soluble sugar, and chlorophyll, and the activities of superoxide dismutase and glutathione peroxidase, all increased compared to those of single Cd treatment (p-values < 0.05). Exogenous Mo application promoted shoot and root growth of Cd-stressed plants in terms of their length, fresh weight, and dry weight. The negative effect of Cd stress on leaf chlorophyll fluorescence was substantially mitigated by applying Mo. Exogenous Mo also improved the uptake of inorganic cations, especially potassium (K+), in Cd-stressed plants. After Mo application, Cd uptake and accumulation were inhibited and Cd tolerance was enhanced, but Cd translocation was less affected in Cd-stressed plants. The mitigation effect of Mo on Cd stress in rape was achieved through the immobilization of soil Cd to reduce plant uptake, and improvement of plant physiological properties to enhance Cd tolerance. In conclusion, exogenous Mo can effectively reduce Cd toxicity to rape and the optimal Mo concentration was 100 mg/kg under the experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document