scholarly journals Effect of Molybdenum on Plant Physiology and Cadmium Uptake and Translocation in Rape (Brassica napus L.) under Different Levels of Cadmium Stress

Author(s):  
Zhangxiong Han ◽  
Xuan Wei ◽  
Dejun Wan ◽  
Wenxiang He ◽  
Xijie Wang ◽  
...  

This study investigated the beneficial effect of molybdenum (Mo) application on rape plants (Brassica napus L.) grown in a soil polluted by cadmium (Cd). A pot experiment was conducted to determine how different concentrations of exogenous Mo (0, 50, 100, and 200 mg/kg) affect plant physiology, biomass, photosynthesis, cation uptake, and Cd translocation and enrichment in rape plants under Cd stress (0.5 and 6.0 mg/kg). Under single Cd treatment, plant physiological and biochemical parameters, biomass parameters, leaf chlorophyll fluorescence parameters, and macroelement uptake of rape plants decreased, while their malonaldehyde content, proline content, non-photochemical quenching coefficient, and Cd uptake significantly increased, compared to those of the control group (p-values < 0.05). High-Cd treatment resulted in much larger changes in these parameters than low-Cd treatment. Following Mo application, the accumulation of malondialdehyde and proline decreased in the leaves of Cd-stressed plants; reversely, the contents of soluble protein, soluble sugar, and chlorophyll, and the activities of superoxide dismutase and glutathione peroxidase, all increased compared to those of single Cd treatment (p-values < 0.05). Exogenous Mo application promoted shoot and root growth of Cd-stressed plants in terms of their length, fresh weight, and dry weight. The negative effect of Cd stress on leaf chlorophyll fluorescence was substantially mitigated by applying Mo. Exogenous Mo also improved the uptake of inorganic cations, especially potassium (K+), in Cd-stressed plants. After Mo application, Cd uptake and accumulation were inhibited and Cd tolerance was enhanced, but Cd translocation was less affected in Cd-stressed plants. The mitigation effect of Mo on Cd stress in rape was achieved through the immobilization of soil Cd to reduce plant uptake, and improvement of plant physiological properties to enhance Cd tolerance. In conclusion, exogenous Mo can effectively reduce Cd toxicity to rape and the optimal Mo concentration was 100 mg/kg under the experimental conditions.

Weed Research ◽  
2016 ◽  
Vol 56 (6) ◽  
pp. 424-433 ◽  
Author(s):  
C J Zhang ◽  
S H Lim ◽  
J W Kim ◽  
G Nah ◽  
A Fischer ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2163 ◽  
Author(s):  
Marwa Ismael ◽  
Ali Elyamine ◽  
Yuan Zhao ◽  
Mohamed Moussa ◽  
Muhammad Rana ◽  
...  

Cadmium (Cd) is highly toxic, even at very low concentrations, to both animals and plants. Pollen is extremely sensitive to heavy metal pollutants; however, less attention has been paid to the protection of this vital part under heavy metal stress. A pot experiment was designed to investigate the effect of foliar application of Se (1 mg/L) and Mo (0.3 mg/L) either alone or in combination on their absorption, translocation, and their impact on Cd uptake and its further distribution in Brassica napus, as well as the impact of these fertilizers on the pollen grains morphology, viability, and germination rate in B. napus under Cd stress. Foliar application of either Se or Mo could counteract Cd toxicity and increase the plant biomass, while combined application of Se and Mo solutions on B. napus has no significant promotional effect on plant root and stem, but reduces the seeds’ weight by 10–11%. Se and Mo have decreased the accumulated Cd in seeds by 6.8% and 9.7%, respectively. Microscopic studies, SEM, and pollen viability tests demonstrated that pollen grains could be negatively affected by Cd, thus disturbing the plant fertility. Se and Mo foliar application could reduce the toxic symptoms in pollen grains when the one or the other was sprayed alone on plants. In an in vitro pollen germination test, 500 μM Cd stress could strongly inhibit the pollen germination rate to less than 2.5%, however, when Se (10 μM) or Mo (1.0 μM) was added to the germination medium, the rate increased, reaching 66.2% and 39.4%, respectively. At the molecular level, Se and Mo could greatly affect the expression levels of some genes related to Cd uptake by roots (IRT1), Cd transport (HMA2 and HMA4), Cd sequestration in plant vacuoles (HMA3), and the final Cd distribution in plant tissue at the physiological level (PCS1).


2020 ◽  
Author(s):  
Yiran Cheng ◽  
Xu Zhang ◽  
Sha Wang ◽  
Xue Xiao ◽  
Jian Zeng ◽  
...  

Abstract Background To study the cadmium (Cd) accumulation in wheat grain, we evaluated the grain Cd concentrations of 46 common wheat cultivars grown at two sites in Sichuan, China and selected five different grain Cd accumulators (a high-Cd accumulator ZM18, four low-Cd accumulators YM51, YM53, SM969 and CM104) to explore the physiological processes of Cd accumulation in the grain of wheat grown under varying degrees of Cd stress. Results Our results showed that the Cd concentration in grain differed among genotypes. Under low-Cd stress, the grain Cd concentration was correlated with the Cd translocation factor (TF) of roots to grain and all the Cd redistribution factors (RFs). Compared with the ZM18, the cultivars YM53 and SM969 accumulated less Cd in the grain due to low Cd redistribution from lower stems and older leaves to grain. The low-Cd accumulators YM51 and CM104 were due to low Cd transport from roots to grain, and low Cd redistribution from glumes, flag leaves, lower stems, and older leaves to grain. Under high-Cd stress, the ZM18, YM53, and SM969 accumulated significantly more Cd in the grain, root and other tissues than did YM51 and CM104. Correlation analyses showed that the grain Cd concentration of wheat under high Cd stress was positively correlated with the Cd concentration in each tissue and the TFs of roots to grains, rachis, internode 1 and flag leaves. Conclusions Cd translocation directly from roots to grain and Cd redistribution from shoots to grain determines the Cd accumulation in grain of wheat cultivars under low-Cd stress. Cd uptake by root and then synchronously transported to new shoots determined the differences of Cd accumulation in the grain of wheat cultivars under high Cd stress.


Sign in / Sign up

Export Citation Format

Share Document