scholarly journals IL-6 and IL-10 in post-transplant lymphoproliferative disorders development and maintenance: a longitudinal study of cytokine plasma levels and T-cell subsets in 38 patients undergoing treatment

2011 ◽  
Vol 24 (9) ◽  
pp. 892-903 ◽  
Author(s):  
Carl Hinrichs ◽  
Sylke Wendland ◽  
Heiner Zimmermann ◽  
Dennis Eurich ◽  
Ruth Neuhaus ◽  
...  
2010 ◽  
Vol 51 (9) ◽  
pp. 1761-1764 ◽  
Author(s):  
Francesca Montanari ◽  
Govind Bhagat ◽  
Sean Clark-Garvey ◽  
Venkatraman Seshan ◽  
Jasmine Zain ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258743
Author(s):  
Nathella Pavan Kumar ◽  
Chandrasekaran Padmapriyadarsini ◽  
Anuradha Rajamanickam ◽  
Perumal Kannabiran Bhavani ◽  
Arul Nancy ◽  
...  

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60–80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 479-479
Author(s):  
Shuntaro Ikegawa ◽  
Yusuke Meguri ◽  
Takumi Kondo ◽  
Hiroyuki Sugiura ◽  
Yasuhisa Sando ◽  
...  

Abstract Allogeneic HSCT has a curative potential for patients with hematological malignancies. However, graft-versus-host disease (GVHD) remains to be a significant cause of morbidity and mortality after HSCT. Regulatory T cells (Tregs) are critical mediator for immune tolerance after HSCT and we recently reported that PD-1 plays an essential role for Treg survival (Asano et al, Blood 2017). Clinical studies suggested that PD-1 blockade prior to HSCT could be a risk of increasing severe GVHD. However, the mechanisms about GVHD induced by PD-1 blockade have largely unclear and there remains a paucity of data on appropriate GVHD prophylaxis for patients who undergo HSCT after PD-1 blockade. To address these issues, we investigated the impact of PD-1 expression on donor T cells on immune reconstitution with murine BMT models. First, lethally irradiated B6D2F1 mice were transplanted with 10 million of C57BL/6-background PD-1+/+ or PD-1-/- spleen cells with 5 million of bone marrow cells from normal C57BL/6, and GVHD scores and overall survival was monitored. Recipients receiving PD-1-/- graft developed severe GVHD resulting in a significant shorter survival than recipients receiving PD-1-/- graft (P<0.0001). We analyzed lymphocytes in spleen and thymus on day3, 7, and 14. We found that CD8 T cells in PD-1-/- group showed markedly higher Ki67 expression and CFSE-dilution until day3. Interestingly, PD-1-/- Tregs increased aggressively at day3 but it could not maintain until day14, while PD-1-/- CD8 T cells and conventional CD4 T cells (CD4 Tcons) continued to increase until day+14, resulting in the significant higher CD8/Treg ratio in PD-1-/- group (P<0.05, vs PD-1+/+ group). PD-1-/- Tregs showed significantly higher expression of Annexin V on day+7 and thymus CD4- and CD8- double-positive (DP) cells were in the extremely low levels in PD-1-/- group on day+14 (P<0.05, vs PD-1+/+ group). Thymic analysis showed that donor PD-1-/- graft-derived CD8 T cells infiltrated thymus in PD-1-/- group, suggesting reconstruction of thymic function was critically disturbed by severe GVHD. These data suggest that loss of PD-1 signaling resulted in unbalanced reconstitution of donor-derived T cell subsets as a consequence of continuous CTL expansion and increased Treg apoptosis. Next, to evaluate the impact of post-transplant cyclophosphamide (PTCy) on the abnormal reconstitution after PD-1 blockade, we administered 50mg/kg of Cy or control vehicle on day3. PTCy efficiently ameliorated GVHD in PD-1-/- group and extended overall survival by safely regulating the proliferation and apoptosis of T cell subsets. Of note, after PTCy, Tregs regained the ability of continuous proliferation in the first 2 weeks, resulting in well-balanced reconstitution of donor-derived T cell subsets. Thymic DP cells on day 14 was markedly increased in PD-1-/- group with PTCy intervention as compared to without PTCy, suggesting PTCy could rescue thymus from PD-1 blockade-related severe GVHD. Finally, to evaluate GVL activity, we performed BMT with co-infusion of P815L tumor cells on day0 and we confirmed that PTCy treatment for PD-1-/- recipients reduced the severity of GVHD with maintaining sufficient GVL effect. In summary, our data suggested three insights about the impact of PD-1 signaling on immune reconstitution. First, PD-1 inhibition influenced graft-derived T cells very differently within T cell subsets. PD-1-/- Tregs increased transiently but it was counterbalanced by accelerated apoptosis, while PD-1-/- CD4+Tcons and CD8 T cells continued the drastic expansion. Second, we found that PD-1-/- donor T cells developed severe GVHD in thymus. Few reports have concentrated on the impact of donor graft PD-1 expression to thymus after BMT and acute GVHD in thymus could lead late central immune disturbance. Third, PTCy successfully ameliorated GVHD induced by PD-1-/- donor T cells preserving GVL effect. Cell proliferation study implied that PD-1-/- graft-derived CD8 T cells might be more susceptible for PTCy because of the high-rate proliferation. In conclusion, PD-1-/- graft cause lethal thymic GVHD and PTCy successfully ameliorated it. The influence of PD-1 inhibition was different within T cell subtypes. PTCy might be appropriate GVHD prophylaxis strategy for patients who had prior usage of PD-1 blockade. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2753-2753
Author(s):  
Joshua D. Brody ◽  
Matthew Goldstein ◽  
Ronald Levy

Abstract Clinical trials of immunotherapy for lymphoma have demonstrated induction of immunologic anti-tumor responses but only a minority of clinical responses. Possible reasons include tumor-produced factors (e.g. IL10, VEGF, TGFβ) and immune-regulatory mechanisms (e.g. Tregs, immature myeloid cells, tumor-associated macrophages). Immunotherapy in the post-transplant setting could overcome both these obstacles, as it is a state of minimal residual disease and of relative lympho- and myelodepletion. We have previously described a method of CD8 T cell-dependent vaccination against established lymphoma tumors by a combination of chemotherapy and intra-tumoral injection of the TLR9 agonist CpG oligodeoxynucleotides. Herein, we transferred splenocytes from such vaccinated mice into lymphodepleted recipient mice. The transferred tumor-specific T cells proliferate in these “empty” mice at a 30-fold excess over that in normal non-depleted recipients. The lymphodepleted recipients of adoptive transfer were completely protected against challenge with the lymphoma tumor at a 100-fold greater tumor cell dose than that required to kill normal animals. Because the transferred effector lymphocytes may still be contaminated by the same immuno-regulatory elements (e.g. Tregs) present in the donor mice, we asked whether these might proliferate and diminish the effector function of anti-tumor T cells. By tracking the homeostatic proliferation of the transferred cells we observed an apparent preferential proliferative capacity of the tumor-responsive CD8 cells and a relative decreased proliferative capacity of transferred foxP3(+) Treg cells. These data suggest that the post-transplant environment can skew the relative proportion of different T cell subsets, which may be a central mechanism for the dramatic improvement in tumor protection observed.


Blood ◽  
2012 ◽  
Vol 120 (3) ◽  
pp. 691-696 ◽  
Author(s):  
Yi-Bin Chen ◽  
Sean McDonough ◽  
Robert Hasserjian ◽  
Heidi Chen ◽  
Erin Coughlin ◽  
...  

Abstract Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8+ T cells with the difference especially pronounced in the central memory subset (CD8+CD45RO+CD62L+): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4+ T cells, and regulatory (CD4+CD127lowCD25+) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30+ infiltrating lymphocytes present. These results suggest that CD30 expression on CD8+ T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2501-2501
Author(s):  
Takanori Yoshioka ◽  
Yusuke Meguri ◽  
Takeru Asano ◽  
Taro Masunari ◽  
Kumiko Kagawa ◽  
...  

Abstract CD4+Foxp3+ regulatory T cells (Treg) play a central role in establishing immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). We previously reported that the long-term severe lymphopenia could result in the collapse of Treg homeostasis leading to the onset of chronic GVHD (Matsuoka et al. JCI 2010). However, Treg homeostasis in the very early phase after HSCT has not been well studied. To address this issue, we here examined the early lymphocytes reconstitution in total 34 patients who received HSCT. Peripheral blood samples were obtained at 2, 4, 8 and 12 weeks after transplant and analyzed the reconstitution of CD4+CD25med-highCD127lowFoxp3+ Treg comparing with CD4+CD25neg-lowCD127highFoxp3- conventional T cell (Tcon) and CD8+ T cells. CD4 T cell subsets are further divided into subpopulations by the expression of CD45RA and CD31. The expressions of Helios, Ki-67, Bcl-2 and C-C chemokine receptor type 4 (CCR4) on these subsets were also examined. These patients were transplanted the grafts from various stem cell sources (7 HLA-matched PBSCT, 12 HLA-matched BMT, 6 HLA-mismatched CBT and 9 HLA-haploidentical PBSCT) and this enables us the opportunity to comparatively evaluate the early lymphocyte reconstitution among the different types of HSCT. After transplant, total lymphocyte counts were significantly lower than the counts before the start of conditioning (median lymphocytes 113/ul at 2 weeks and 223/ul at 4 weeks vs 550/ul before conditioning, P<0.01 and P<0.01, respectively). In the severely lymphopenic condition in the first month after HSCT, all T cell subsets were undergoing aggressive proliferation in this acute phase as compared to proliferation in the chronic phase, however, Treg proliferation was significantly higher than in Tcon at 4 weeks (%Ki-67+ cells; median 56.4%, 23.4%, respectively, P<0.02). %Treg of total CD4 T cells elevated and peaked at 4 weeks post-transplant. At this timepoint, %Treg of CD4 T cells showed the clear inverse correlation with %CD45RA+ of Treg (r2=0.40), suggesting the expansion of Treg in this phase appears to be a result from severe lymphopenia-driven proliferation which involves conversion from naive into memory phenotype. Elevation of %Treg was most evident in the patients who received HLA-haploidentical graft after ATG-containing conditioning (median 8.41% in haplo-HSCT, 5.25% in other groups, P<0.05), again indicating the lymphopenia is critical factor to drive Treg proliferatrion. Expanded Treg showed a predominant Helios+CD45RA-CD31- effector/memory phenotype with the lower level of Bcl-2 expression as compared to CD45RA+ naïve Treg. The elevation of Treg did not sustain and %Treg of CD4 T cells got back to the baseline level by 8 weeks. During the first 3 months after HSCT, CD45RA- Treg exhibited high level of CCR4 and the recovery of this subset was critically delayed in Adult T-cell Leukemia (ATL) patients treated with anti-CCR4 antibody in the peri-transplant period, resulting in the development of acute graft-versus-host diseases. In conclusion, our findings suggest that, not only in the chronic phase but also in the acute phase, the homeostasis of Treg is more susceptible to the post-transplant environment as compared to other lymphocyte subsets. Post-transplant lymphopenia drives aggressive Treg proliferation resulting in the increased percentage of this subset in the very acute phase which may contribute to stabilize the immune recovery. The careful monitoring of Treg from the point of view might provide important information to promote immune tolerance. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document