scholarly journals BCG vaccination induces enhanced frequencies of memory T cells and altered plasma levels of common γc cytokines in elderly individuals

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258743
Author(s):  
Nathella Pavan Kumar ◽  
Chandrasekaran Padmapriyadarsini ◽  
Anuradha Rajamanickam ◽  
Perumal Kannabiran Bhavani ◽  
Arul Nancy ◽  
...  

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60–80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S182-S183
Author(s):  
Samuel Bailin ◽  
Kathleen McGinnis ◽  
Wyatt J McDonnell ◽  
Kaku So-Armah ◽  
Melissa Wellons ◽  
...  

Abstract Background Depletion of naïve CD4+ T cells and elevated adaptive immune activation are hallmarks of HIV infection. Higher proportions of memory CD4+ T cells are associated with prevalent diabetes in the general population, but few studies of persons with HIV (PWH) exist. Methods We analyzed data from 1532 PWH and 836 uninfected veterans in the longitudinal Veterans Aging Cohort Study (VACS), which archived peripheral mononuclear cells from these veterans between 2005 and 2007. We used flow cytometry to phenotype CD4+ and CD8+ T cells, including naïve, activated CD38+, senescent CD57+, total memory, and memory subsets. Prevalent diabetes (at blood collection) was identified in the VA electronic medical record using random glucose, hemoglobin A1c, ICD-9 codes, and medication. Cases were validated by two-physician chart review. We used multivariate logistic regression models adjusted for age, gender, body mass index, race/ethnicity, unhealthy alcohol use, hepatitis C, CMV status, and viral suppression stratified by HIV status to identify T-cell subsets associated with diabetes in PWH and uninfected. Results The cohort was 95% male, 68% African-American, and 22% diabetic. Higher CD4+CD45RO+ memory T cells were associated with prevalent diabetes in the uninfected and in PWH (P = 0.03 and P = 0.07, respectively; Figure A). Among subsets, diabetes was associated with higher transitional memory CD4+ T cells in the uninfected (P = 0.01), but higher central memory cells (P = 0.02) and lower effector memory cells (P = 0.04) in PWH. T effector memory RA+ cells were not associated with diabetes. Lower senescent CD4+CD57+ T cells were associated with diabetes in both PWH and uninfected (P = 0.03 and P = 0.04, respectively; Figure B), but results for naïve CD8+ T cells diverged: diabetes was associated with higher naïve CD8+cells in PWH but lower in uninfected (P = 0.01 and P &lt; 0.01, respectively; Figure C). We assessed interaction by HIV status in a pooled model, which was only significant for the naïve CD8+ T cells (P = 0.01). Conclusion The adaptive immune profile associated with prevalent diabetes was similar by HIV status and characterized by a shift in CD4+ T cells from senescent to memory phenotypes, suggesting that chronic immune activation contributes to the higher risk of diabetes in PWH. Disclosures All authors: No reported disclosures.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sofya A Kasatskaya ◽  
Kristin Ladell ◽  
Evgeniy S Egorov ◽  
Kelly L Miners ◽  
Alexey N Davydov ◽  
...  

The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2349-2349
Author(s):  
Claudia Brandao ◽  
Alexander M. de Bruin ◽  
Martijn A. Nolte

Abstract Abstract 2349 After immune activation, effector/memory T cells, including virus-specific CD8 T cells, are known to migrate to the bone marrow (BM), where they can be maintained by the production of IL-15 by the stroma; however, it is not yet known whether these T cells also have a function at this site. Since depletion of T cells from allogenic BM grafts compromises HSC engraftment, we hypothesize that T cells can directly influence the balance between differentiation and self-renewal of hematopoietic stem cells (HSCs). To test the ability of T cells to affect hematopoiesis, we performed co-cultures of HSCs and T cells isolated from murine BM. We found that T cells localized in the BM are able to enhance HSC differentiation as well as their self-renewal capacity. This feature is specific for BM central memory (CM) CD8 T cells, since other T cell subsets are not able to affect HSCs to the same extent. Moreover, depletion of CM CD8 T cells from the total BM T cell pool abrogates the impact on HSC differentiation and self-renewal, indicating that this particular T cell population is both sufficient and required for the observed effects. BM CM CD8 T cells do not affect quiescence of HSCs, but do enhance their proliferative capacity, and we found that supernatant from CM CD8 T cells is sufficient for this effect. Interestingly, competitive transplantation assays showed that HSCs cultured with CM CD8 T cells-derived supernatant contribute much better to leukocyte formation than medium-treated HSCs. This effect is seen in both the myeloid and lymphoid compartment, indicating that CM CD8 T cells are able to release soluble factors that support and enhance the multilineage reconstitution capacity of HSCs. Functional studies with blocking antibodies or knock-out mice showed that the supernatant-mediated effect is not caused by the hematopoietic cytokines IL3, IL6, IL21, GM-CSF, RANTES, TNFα or IFNγ. Preliminary data indicate that this feedback mechanism of the immune system on the hematopoietic process in the bone marrow is also present in the human situation, since autologous BM T cells increase the numbers of human HSCs, as well as their differentiation capacity. Overall, these findings demonstrate that T cells have an important function in the BM and that especially CD8 TCM cells can directly influence HSC homeostasis. We postulate that this feedback mechanism of the immune system on the hematopoietic process in the BM is particularly relevant during viral infection, as the efficient migration of virus-specific CD8 T cells to the BM could well benefit the replenishment of the HSC/progenitor cell compartment and restoration of blood cell numbers that got lost upon infection. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4352-4352
Author(s):  
Mohammad Raeiszadeh ◽  
Matthew Verney ◽  
Charles Craddock ◽  
Harald Wajant ◽  
Paul Moss ◽  
...  

Abstract Recent evidence suggests that Tumor Necrosis Factor (TNF) can selectively kill antigen-specific autoreactive CD8+ T-cells through engagement with TNF Receptor 2 (TNFR2) (1). Within the immune system, TNFR2 expression is restricted to subsets of T-cells, a profile which is in marked contrast to the ubiquitous pattern of expression of TNFR1. However, the spectrum and physiological significance of TNFR2 expression by CD8+ T-cell subpopulations is unknown. In this study we analysed the expression of TNFR2 by CD8 T-cell subsets isolated from normal healthy donors by flow cytometry. In addition, in order to understand the physiological significance of TNFR2 expression on recently activated T cells, we further studied expression on CMV-specific CD8 T-cells which expanded in stem cell transplant patients in response to episodes of CMV reactivation. The expression of TNFR2 was compared to that of other common gamma chain receptors including IL2R and IL7R, and to the expression of a receptor for inflammatory cytokine IL6. TNFR2 expression was found to increase during differentiation of CD8+ T cells. In particular, TNFR2 expression was seen on 6.5% of naïve, 14.6% of central memory, 37.9% of effector memory and 45.2% of CD45RA-revertant effector memory (TEMRA) CD8+ T cells. In contrast, common gamma chain cytokine receptor expression was skewed towards less differentiated T-cell subsets. For example, IL-7R was expressed by 63% of central memory populations but only 18.4% of the TEMRA subset. Comparable expression of IL2R was 12.1% on TCM and 2% on TEMRA. Of interest, IL-6 receptor expression was predominantly expressed by naïve CD8 T-cells (69.5%). In support of these results, we went on to show that expression of TNFR2 was inducible on primary T cells following activation with anti-CD3 and IL-2 in vitro. Healthy CMV seropositive donors had a larger median number of CD8+ T cells expressing TNFR2 (53%) in comparison to CMV seronegative donors (15%), (p<0.0001), consistent with the known accumulation of differentiated T-cells within CMV seropositive individuals.The expression of TNFR2 was then examined on CMV-specific CD8 T-cells which were undergoing acute expansion in response to viremia in six haemopoietic stem cell transplant patients. The expansion of CMV-specific CD8 T-cells was accompanied by an increase in the intensity of TNFR2 expression which later decreased during the retraction of antigen-specific T-cells during resolution of viremia. In order to explore the functional significance of TNFR2 expression, T-cells isolated from healthy donors were treated with recombinant TNFR2-specific ligand. This induced cell loss ranging from 13% to 60% of all CD8 T-cells in relation to untreated control cells, with selective depletion of the TNFR2+ population. A similar proportion of CMV-specific T-cells from transplant patients were eliminated by ex vivo stimulation of TNFR2. In conclusion our work shows that TNFR2 expression increases during differentiation of CD8+ T cells. In addition, we were able to utilize virus-specific T cells from SCT patients to show that expression is increased during the acute response to stimulation with antigen. We also provide evidence that TNFR2 activation can lead to the partial elimination of antigen-specific CMV-specific T-cells and it may thus play an important role in the ‘deflation’ of a pathogen-specific T-cell immune response following resolution of infection. These data suggest that TNFR2 expression may act as a ligand to signal activation-induced cell death in late differentiated populations of CD8+ T cells. Further investigations are required to assess the molecular pathways of TNFR2 signalling that are activated following receptor ligation in vivoand whether or not these are disrupted in disorders associated with chronic CD8+ T cell lymphproliferation. (1) L. Ban et al, PNAS 2008, 105: 3644 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5626-5626
Author(s):  
Irene Scarfò ◽  
Kathleen Gallagher ◽  
Marcela V. Maus ◽  
Rebecca Larson ◽  
Maegan Sheehan ◽  
...  

Chimeric antigen receptor T-cells (CAR-T) have emerged as an extremely promising therapy for hematological malignancies. The immunophenotype of apheresis material and the CAR-T cell product is known to be predictive of the likelihood of response to treatment of certain malignancies. Central memory and stem cell-like memory T cell phenotypes are associated with a more sustained proliferative response and long-term CAR-T persistence (Fraietta et al, Nature Medicine, 2018). There is an unmet need for standardized methods and reagents to reliably profile the memory phenotype of CAR-Ts to better evaluate product quality, and support improvements in CAR-T manufacturing. The BD Biosciences dried memory T-cell panel contains a pre-validated mixture of 7 antibodies for the identification of naïve, stem cell memory, central memory and effector memory CD4+ and CD8+ T cell subsets. The pre-mixed dried antibody tube offers consistency in staining profiles over time and reduces the risk of operator errors. Additional drop-in antibodies can complement the panel and enable more in-depth evaluation of the T cell phenotype. Here we demonstrate the use of this panel with drop-in markers to monitor changes in expression of PD-1, TIM-3, LAG-3, HLA-DR, CD45RO, and CXCR3 on T cells transduced to express our novel anti-CD37 CAR. Cells were stained at day 0 prior to transduction, day 7, and following resting and re-stimulation, and acquired on a 12 color BD FACS Lyric. The use of a standardized memory T-cell panel will allow us to more accurately evaluate how T-cell phenotype impacts on the efficacy and longevity of response in patients receiving CAR-T therapies. Disclosures Maus: INFO PENDING: Other: INFO PENDING. Bornheimer:BD Biosciences: Employment. Hanley:BD Biosciences: Employment. Frigault:Novartis: Patents & Royalties: Royalty; Arcellx, Celgene, Foundation Medicine, Kite/Gilead, Nkarta, Novartis, and Xenetic: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4128-4128 ◽  
Author(s):  
Mark N. Polizzotto ◽  
Irini Sereti ◽  
Thomas S. Uldrick ◽  
Kathleen M. Wyvill ◽  
Stig M. R. Jensen ◽  
...  

Abstract Background: Despite antiretroviral therapy (ART), people with HIV continue to exhibit immune deficits including failure to fully reconstitute CD4 T cell numbers and function, resulting in increased risks of tumors and infections and reduced response to vaccination. Pomalidomide, a derivative of thalidomide (IMID), has immunomodulatory properties that may be beneficial in this setting. We explored its impact on lymphocyte number and activation in patients with and without HIV treated within a prospective clinical trial for Kaposi sarcoma. Methods: Patients received pomalidomide 5mg orally for 21 days of 28 day cycles. Assessments were performed every 4 weeks for lymphocyte numbers, Kaposi sarcoma associated herpesvirus (KSHV/HHV8) viral load (VL) and HIV VL and at 8 weeks for T cell subsets and activation by immunophenotyping of peripheral blood mononuclear cells (PBMC). KSHV VL in PBMC and HIV VL in plasma were assayed by quantitative PCR; for HIV VL we used an ultrasensitive single copy assay. Changes from baseline were evaluated using the Wilcoxon signed rank test with P<0.005 considered significant given multiple comparisons. Differences in changes between the HIV infected and uninfected groups were evaluated using the Wilcoxon rank sum test. Study registered as NCT1495598. Results: 19 patients (12 HIV infected, 7 uninfected) median age 50 years (range 32-74) were studied. All with HIV were receiving ART for median 48 months (7-227), HIV VL 1.5 copies/mL (<0.5–37), and CD4 378 cells/µl (135–752). At week 4 and 8 of therapy we observed significant increases in CD4 and CD8 counts, with a decline in CD19 B cells and no change in NK cells or HIV VL. A transient increase in KSHV VL was seen at week 4, not sustained at week 8: Abstract 4128. Table 1ParameterBaseline (cells/µl unless noted)Change to Week 4 (Med, range)PChange to Week 8 (Med, range)PCD31143 (525–2305)+264 (-419–1524)0.0028+210 (-496–1455)0.0020CD4429 (135–1171)+107 (-87–650)0.0009+86 (-37–491)0.0015CD8495 (259–1529)+108 (-271–915)0.0085+155 (-495–834)0.0046NK184 (28–557)+30 (-130–117)0.52+2 (-174–127)0.98CD19139 (9–322)-47 (-117–76)0.0039-79 (-169–62)<0.0001KSHV VL 0 copies/PBMC (0–8750)+23 (-92–5250)0.00980 (-92–20850)0.31Plasma HIV VL (infected pts)1.5 copies/mL (<0.5–37)+0.3 (-1.5–3.0)0.75+0.75 (0–28)0.13 In addition, at week 8 both CD4 and CD8 T cells showed significant increases in activation (CD38+, HLADR+ and DR+/38+) and decreases in senescence (CD57+). Both also showed a significant shift towards increased central memory (CM) and away from naive (N) and effector (E) phenotypes, with no change in effector memory (EM) cells: Abstract 4128. Table 2CD4 SubsetsBaseline (%) (med, range)Absolute Change in % at Week 8 (med, range)PRO- 27+ (N)32.6 (13.3–76.5)-6.6 (-35.8–21.6)0.002RO+ 27+ (CM)41.9 (13.6–63.6)+6.4 (-15.5–32.5)0.027RO+ 27- (EM)16.7 (4.6–31.7)+1.7 (-7.2–21.0)0.28RO- 27- (E)3.3 (0.4–14.3)-1.5 (-5.7–0.3)0.000438+34.5 (11.2–67.3)+4.3 (-13.0–19.4)0.024HLA DR+8.9 (3.3–25.0)+8.3 (0.7–19.5)<0.000138+ DR+2.5 (0.6–11.7)+2 (-1.0–8.1)<0.000157+6.3 (0.6–26.6)-1.34 (-16.2–7.6)0.034CD8 SubsetsRO- 27+ (N)21.0 (9.7–70.4)-5.1 (-13.7–14.3)0.019RO+ 27+ (CM)17.1 (2.5–37.9)+8.1 (-8.4–18.6)0.0047RO+ 27- (EM)18.4 (4.6–40.8)+1.0 (-9.4–44.9)0.35RO- 27- (E)31.8 (4.1-63.7)-6.1 (-47.3–22.5)0.0138+33.4 (8.3–66.0)+19.9 (-0.8–40.6)<0.0001HLA DR+19.6 (5.0–46.4)+11.6 (-4.7–32.1)0.000138+ DR+8.0 (0.4–33.3)+8.5 (0.1–22.6)<0.000157+30.8 (2.9–72.9)-11.0 (-28.5–6.1)<0.0001 There were no significant changes in Ki67 or PD-1 expression in either CD4 or CD8 cells. There was no significant difference between HIV infected and uninfected patient groups in the observed effects on any parameter including cell number and phenotype. Conclusions: Pomalidomide induced significant increases in the number of CD4 and CD8 T cells and the proportion of activated and central memory cells and decreased senescence in both HIV infected and uninfected subjects. Effects were not explained by alterations in HIV viremia. The transient early rise in KSHV VL may reflect reactivation of latent infection and enhance immune killing of KSHV infected cells. This analysis sheds light on possible mechanisms of IMID activity in viral-associated tumors. As the first study of immune modulation by IMIDs in vivo in people with HIV it also suggests exploration of IMIDs to augment immune responsiveness in HIV and other immunodeficiencies is warranted. Disclosures Polizzotto: Celgene Corporation: Research Funding. Off Label Use: Pomalidomide for Kaposi sarcoma. Uldrick:Celgene Corporation: Research Funding. Zeldis:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Yarchoan:Celgene Corporation: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1464-1464
Author(s):  
Stephanie Thiant ◽  
Zaiba Shamim ◽  
Lars Peter ◽  
Valérie Coiteux ◽  
Jean Paul Dessaint ◽  
...  

Abstract Abstract 1464 IL-7 is one of essential driving forces for homeostatic peripheral expansion of T lymphocytes that are responsible, not only for GVL effects but also for acute GVHD, a major post-transplant complication. High plasma levels of IL-7 in the early phase post-transplant, has been associated with high incidence of severe acute GVHD regardless the intensity of conditioning regimen. Inter-individual variations have also been reported. Here we aimed to identify factors that could have an impact on IL-7 level and, therefore, on acute GVHD. This prompted us to prospectively investigate plasma levels of IL-7, T-cell subsets recovery, T cells’ IL-7Rα chain expression, and IL-7Rα chain polymorphism in 100 pts who underwent fully HLA-matched allogeneic stem cell transplantation in our unit. Pts received either myeloablative (n= 60) or nonmyeloablative (n=40). Forty donors were unrelated. Source of stem cells, was bone marrow in 71 pts and PBCS in 29. Sex ratio (M/F) was (66/34) and median age at transplant was of 49 years. Plasma IL-7 level was determined by ELISA at enrolment, on day 0 before grafting, every three days during the first month, and then on days 60 and 90. CD3+, CD4+, CD8+ T-cells and NK cells counts at day 30, 60 and 90 post-graft were obtained by flow-cytometry-based technique. Expression of IL-7Rα (% and MFI) was evaluated on each subset of naïve and memory T-cells, categorized according to their expression of CD45RA and CCR7 markers. The detection of IL-7Ra single nucleotide polymorphism (SNPs) by sequence specific PCR (SSP), in donors, was carried out as described by Shamim et al, (BMT 2006). IL-7 receptor consisted of γc-chain and specific α-chain. A range of IL7R α-chain SNPs was reported (+510 C/T, +1237 A/G, +2087 T/C which all resulted in amino-acid substitution). At the time of analysis, 40 (40%) recipients had developed grade 2–4 acute GVHD (aGVHD) with a median time of 33 days post transplant. As expected, IL-7 levels peaked around the second week at median of 11.5 pg/mL (0.4-30.2) after transplant. Kinetic courses of plasma IL-7 levels, evolved inversely to lymphocyte counts up to d+30 (p<.001). The cumulative incidence of aGVHD was higher if by day+18 pts had IL-7 levels above the median concentration (p= .046). A higher level of IL-7 at day+18 was confirmed as a predictive factor of subsequent risk of aGVHD (HR= 1,079; 95% CI: 1.022 – 1.139; p= .006). By calculating the area under the curve of IL-7 between d-15 and d+30, we observe that a high exposure to IL-7 during the first month is correlated with the risk of aGVHD (p=.002). IL-7 plasma levels were inversely correlated with IL-7Rα expression only on central/effector memory CD4+ and central/effector memory CD8+, and terminally differentiated CD8+ T-cells (p =.006, .013, .044, .001 and .028, respectively). Of note, at d+30, pts had 85% (34-99) and 86% (23-99) of CD4+ and CD8+ memory T cells, respectively. Contrary to +1237 A/G and +2087 T/C, donor's +510 CC or CT was the only polymorphism to be associated with higher level of plasma IL-7 in recipients during the first month post-transplant in particular at d+18, predictive date for aGVHD (p = .026). In multivariate analysis, pts who received graft from donor with +510CC or CT experienced more often grade 2–4 aGVHD than those with +510 TT (P = .049). Collectively, this study confirms the role of IL-7 in grade 2–4 aGVHD. Indeed, the high level of IL-7 that down regulates IL-7Rα, could suggest activation and consumption of IL-7 by alloreactive T cells, including those involved in aGVHD development. By difference in affinity and cytokine consumption, the polymorphism +510 of donor t-cell IL-7R α-chain might explain, in part, the wide variation of IL-7 level among pts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3242-3242
Author(s):  
Robbert van der Voort ◽  
Claudia Brandao ◽  
Thomas J. Volman ◽  
Viviènne Verweij ◽  
Klaas van Gisbergen ◽  
...  

Abstract Abstract 3242 Although the importance of the bone marrow (BM) in hematopoiesis is well known, its function in adaptive immune responses has only recently been acknowledged. Currently it is known that the BM contains fully functional CD4+ and CD8+ T cells that can engage in both primary and secondary immune responses. Interestingly, most of these T cells belong to the memory T cell lineage, identifying the BM as one of the largest memory T cell reservoirs in the body. Since not much is known about the trafficking of BM T cells, we compared the homing phenotype and function of T cell subsets in the BM, blood, spleen and peripheral lymph nodes (pLN). In addition, we determined the expression of chemokine mRNA and protein levels in the BM and other lymphoid organs. We confirmed that at least 80% of the CD4+ and 60% of the CD8+ BM T cells have a memory phenotype, and that most CD4+ T cells belong to the effector memory lineage, while the CD8+ population predominantly consists of central memory T cells. Most BM T cells expressed the chemokine receptor CXCR3, the adhesion molecules P-selectin glycoprotein ligand 1 and VLA-4, and increased levels of CD44 and LFA-1, as compared to T cells from the spleen. In addition, L-selectin was absent from most CD4+ BM T cells, but present on virtually all CD8+ T cells. Notably, the percentage of CXCR3+ T cells within the effector memory and central memory subsets from BM was higher than within the same subsets from pLN. Furthermore, BM contained significant mRNA levels of the CXCR3 ligands CXCL9, CXCL10 and CXCL11. An in vivo migration assay using a mixture of fluorescent-labeled T cells from CXCR3-deficient mice and control mice indicated however that during homeostasis CXCR3 does not play a major role in BM entry or retention. These data suggest that CXCR3 expressed by memory T cells is rather involved in BM exit, than in BM entry. Indeed, we observed that, as compared to control mice, CXCR3−/− mice contained significantly more CD4+ and CD8+ T cells in their BM. Additional in vitro assays demonstrated that CD4+ and CD8+ BM T cells migrated vigorously in response to CXCL9 and CXCL10, generally released in high concentrations during inflammation. Finally, we demonstrate that CXCR3−/− effector/effector memory T cells, but not wild type T cells, accumulate in the BM of mice infected with lymphocytic choriomeningitis virus. Altogether, these data demonstrate that the BM is a major reservoir of memory T cells that employ CXCR3 to quickly respond to chemotactic signals from inflamed tissues. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document