Characterization of Isolates of Bacterial Blight of Cotton (Xanthomonas campestris pv. malvacearum) from Nicaragua

1988 ◽  
Vol 123 (4) ◽  
pp. 344-352 ◽  
Author(s):  
A. Zachowski ◽  
K. Rudolph
2003 ◽  
Vol 16 (11) ◽  
pp. 1030-1038 ◽  
Author(s):  
E. Delannoy ◽  
A. Jalloul ◽  
K. Assigbetsé ◽  
P. Marmey ◽  
J. P. Geiger ◽  
...  

Cotton cotyledons displayed a hypersensitive reaction (HR) in the cultivar Réba B50 after infiltration with the aviru-lent race 18 from Xanthomonas campestris pv. malvacearum. Two sets of peroxidases were associated with the HR time course. Early but transient accumulation of peroxidase in material encapsulating the bacteria in intercellular areas was observed by immunocytochemistry at 3 h postinfection and coincided with the oxidative burst. Total guaiacol-peroxidase activity was highly increased in cells undergoing HR, from 12 h after treatment. Molecular characterization of seven cloned peroxidase genes revealed highly conserved B, D, and F domains, with similarities to plant class III peroxidases. Analysis of gene expression showed variation in transcript accumulation during both compatible (race 20) and incompatible interactions for four of these genes: pod2, pod3, pod4, and pod6.Pod4 and pod6 were more intensely up-regulated during resistance than during disease and in the control, while pod3 was specifically down-regulated during the HR after the oxidative burst. Pod2 was induced by pathogen infection and weakly stimulated in the control. These data suggest that cotton peroxidases may have various functions in the defense response to Xanthomonas infections.


2002 ◽  
Vol 92 (12) ◽  
pp. 1323-1328 ◽  
Author(s):  
Margaret Essenberg ◽  
Melanie B. Bayles ◽  
Roushan A. Samad ◽  
Judy A. Hall ◽  
L. A. Brinkerhoff ◽  
...  

The development and genetic characterization of four near-isogenic lines (NILs) of cotton (Gossypium hirsutum) is described herein. Each line contains a single, but different, gene for resistance to bacterial blight caused by Xanthomonas campestris pv. malvacearum. The lines were derived using at least six backcrosses to the susceptible recurrent parent ‘Acala 44’, followed by single plant-progeny row selection for uniformity. The NILs are homozygous for the B2, B4, BIn, or b7 genes and are designated as AcB2, AcB4, AcBIn, and Acb7, respectively. In the ‘Acala 44’ background, B2, B4, and BIn are partially dominant genes; b7 is partially recessive. Relative strengths of resistance conferred by those genes toward race 1 of the pathogen were B4˜b7>BIn˜B2. B4, BIn, and b7 each conferred resistance toward X. campestris pv. malvacearum carrying a single avirulence gene, whereas B2 was less specific.


2008 ◽  
Vol 34 (3) ◽  
pp. 228-231 ◽  
Author(s):  
Willian Mário de Carvalho Nunes ◽  
Maria Júlia Corazza ◽  
Silvana Aparecida Crestes Dias de Souza ◽  
Siu Mui Tsai ◽  
Eiko Eurya Kuramae

A simple, quick and easy protocol was standardized for extraction of total DNA of the bacteria Xanthomonas axonopodis pv. phaseoli. The DNA obtained by this method had high quality and the quantity was enough for the Random Amplified Polymorphic DNA (RAPD) reactions with random primers, and Polymerase Chain Reaction (PCR) with primers of the hypersensitivity and pathogenicity gene (hrp). The DNA obtained was free of contamination by proteins or carbohydrates. The ratio 260nm/380nm of the DNA extracted ranged from 1.7 to 1.8. The hrp gene cluster is required by bacterial plant pathogen to produce symptoms on susceptible hosts and hypersensitive reaction on resistant hosts. This gene has been found in different bacteria as well as in Xanthomonas campestris pv. vesicatoria (9). The primers RST21 and RST22 (9) were used to amplify the hrp gene of nine different isolates of Xanthomonas axonopodis pv. phaseoli from Botucatu, São Paulo State, Brazil, and one isolate, "Davis". PCR amplified products were obtained in all isolates pathogenic to beans.


2021 ◽  
Vol 60 (1) ◽  
pp. 51-62
Author(s):  
Samia LAALA ◽  
Sophie CESBRON ◽  
Mohamed KERKOUD ◽  
Franco VALENTINI ◽  
Zouaoui BOUZNAD ◽  
...  

Xanthomonas campestris pv. campestris (Xcc) causes the black rot of cruciferous plants. This seed-borne bacterium is considered as the most destructive disease to cruciferous crops. Although sources of contamination are various, seeds are the main source of transmission. Typical symptoms of black rot were first observed in 2011 on cabbage and cauliflower fields in the main production areas of Algeria. Leaf samples displaying typical symptoms were collected during 2011 to 2014, and 170 strains were isolated from 45 commercial fields. Xcc isolates were very homogeneous in morphological, physiological and biochemical characteristics similar to reference strains, and gave positive pathogenicity and molecular test results (multiplex PCR with specific primers). This is the first record of Xcc in Algeria. Genetic diversity within the isolates was assessed in comparison with strains isolated elsewhere. A multilocus sequence analysis based on two housekeeping genes (gyrB and rpoD) was carried out on 77 strains representative isolates. The isolates grouped into 20 haplotypes defined with 68 polymorphic sites. The phylogenetic tree obtained showed that Xcc is in two groups, and all Algerian strains clustered in group 1 in three subgroups. No relationships were detected between haplotypes and the origins of the seed lots, the varieties of host cabbage, the years of isolation and agroclimatic regions.


1990 ◽  
Vol 115 (2) ◽  
pp. 319-323 ◽  
Author(s):  
H.Z. Zaiter ◽  
D.P. Coyne ◽  
J.R. Steadman

Ten dry bean (Phaseolus vulgaris L.) cultivars/lines with differential reactions to rust were used in growth chamber experiments to determine rust [Uromyces appendiculatus (Pers.) Unger var. appendiculutus, (U a)], and common bacterial blight Xanthomonas campestris pv. phaseoli (E.F. Sm.) Dews. (X c p)] reactions on leaves when coinoculated with both pathogens. The X c p-U a necrosis symptoms were very different from those caused by X c p alone. Depending on the level of host susceptibility to rust, the X c p reaction remained confined within the rust pustule or spread beyond the pustule area, causing a necrosis of the entire leaf. Prior infection of bean seedlings with bean common mosaic virus (BCMV), NY-15 strain, reduced rust pustule size, but did not affect the reaction to X c p. Screening with X c p and BCMV can be done at the same time during the early vegetative stage, but the interactions of U a with X c p and of BCMV with U a need to be considered in screening for resistance.


2003 ◽  
Vol 93 (5) ◽  
pp. 596-603 ◽  
Author(s):  
Jeri D. Barak ◽  
Robert L. Gilbertson

Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 546-554 ◽  
Author(s):  
N. Mutlu ◽  
A. K. Vidaver ◽  
D. P. Coyne ◽  
J. R. Steadman ◽  
P. A. Lambrecht ◽  
...  

Both the common bacterial blight (CBB) pathogen (Xanthomonas campestris pv. phaseoli) and X. fuscans subsp. fuscans, agent of fuscous blight, cause indistinguishable symptoms in common bean, Phaseolus vulgaris. Yield losses can exceed 40%. Lack of information about the specificity between X. campestris pv. phaseoli strains and major quantitative trait loci (QTL) or alleles conferring resistance makes the task of identifying genetic changes in host–pathogen interactions and the grouping of bacterial strains difficult. This, in turn, affects the choice of pathogen isolates used for germplasm screening and complicates breeding for CBB resistance. Common bean host genotypes carrying various sources and levels of resistance to CBB were screened with 69 X. campestris pv. phaseoli and 15 X. fuscans subsp. fuscans strains from around the world. Differential pathogenicity of the CBB pathogen was identified on the 12 selected bean genotypes. The X. fuscans subsp. fuscans strains showed greater pathogenicity than X. campestris pv. phaseoli strains having the same origin. African strains were most pathogenic. The largest variation in pathogenicity came from X. campestris pv. phaseoli strains that originated in Caribbean and South American countries. Pathogenic variation was greater within X. campestris pv. phaseoli than within X. fuscans subsp. fuscans strains. Implications for breeding for CBB resistance are discussed.


2018 ◽  
Vol 51 (1) ◽  
pp. 45-50
Author(s):  
P.B. Sandipan ◽  
R.K. Patel ◽  
G.O. Faldu ◽  
D.M. Patel ◽  
B.G. Solanki

Abstract Cotton is a soft, fluffy staple fiber that grows in a boll, around the seeds of the cotton plants of the genus Gossypium in the family Malvaceae. Bacterial blight of cotton, also know as angular leaf spot, boll rot, and black leg, is a potentially destructive bacterial disease of cotton production. The disease caused by Xanthomonas campestris pv. malvacearum (Smith) Dye (synonyms Xanthomonas malvacearum (E.F. Sm) Dowson) is one of the most important and serious disease in cotton crop. Main objective of present research is to study the progress of the bacterial blight disease of cotton (BLB), caused by Xanthomonas campestris pv. malvacearum (Smith) Dye, with relation to the environmental parameters. This is a common disease affecting the growth, development and yield of cotton. A field trial was conducted to determine the influence of environmental factors, viz. rainfall periods, temperature, sun shine hours and humidity on the development of disease. Bacterial blight disease was recorded with its appearance and subsequently at weekly interval till it prevailed on G. Cot. Hy.12 (Non Bt). The incidence of bacterial blight disease (BLB) was noticed during 28 to 49th standard week with the maximum disease intensity in third week of September (23.5% PDI). None of the abiotic factors had significant influence on bacterial blight disease progress and development.


Sign in / Sign up

Export Citation Format

Share Document