Cloning and functional characterization of genes involved in fatty acid biosynthesis in the novel oilseed crop Lepidium campestre L.

2010 ◽  
Vol 130 (3) ◽  
pp. 407-409 ◽  
Author(s):  
Dennis Eriksson ◽  
Arnulf Merker
Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1287
Author(s):  
Shouxiang Sun ◽  
Yumei Wang ◽  
Pei-Tian Goh ◽  
Mónica Lopes-Marques ◽  
L. Filipe C. Castro ◽  
...  

Elongation of very long-chain fatty acid (Elovl) proteins are key enzymes that catalyze the rate-limiting step in the fatty acid elongation pathway. The most recently discovered member of the Elovl family, Elovl8, has been proposed to be a fish-specific elongase with two gene paralogs described in teleosts. However, the biological functions of Elovl8 are still to be elucidated. In this study, we showed that in contrast to previous findings, elovl8 is not unique to teleosts, but displays a rather unique and ample phylogenetic distribution. For functional determination, we generated elovl8a (elovl8a−/−) and elovl8b (elovl8b−/−) zebrafish using CRISPR/Cas9 technology. Fatty acid composition in vivo and zebrafish liver cell experiments suggest that the substrate preference of Elovl8 overlapped with other existing Elovl enzymes. Zebrafish Elovl8a could elongate the polyunsaturated fatty acids (PUFAs) C18:2n-6 and C18:3n-3 to C20:2n-6 and C20:3n-3, respectively. Along with PUFA, zebrafish Elovl8b also showed the capacity to elongate C18:0 and C20:1. Gene expression quantification suggests that Elovl8a and Elovl8b may play a potentially important role in fatty acid biosynthesis. Overall, our results provide novel insights into the function of Elovl8a and Elovl8b, representing additional fatty acid elongases not previously described in chordates.


2019 ◽  
Vol 116 (14) ◽  
pp. 6775-6783 ◽  
Author(s):  
Greg J. Dodge ◽  
Ashay Patel ◽  
Kara L. Jaremko ◽  
J. Andrew McCammon ◽  
Janet L. Smith ◽  
...  

Fatty acid biosynthesis in α- and γ-proteobacteria requires two functionally distinct dehydratases, FabA and FabZ. Here, mechanistic cross-linking facilitates the structural characterization of a stable hexameric complex of sixEscherichia coliFabZ dehydratase subunits with six AcpP acyl carrier proteins. The crystal structure sheds light on the divergent substrate selectivity of FabA and FabZ by revealing distinct architectures of the binding pocket. Molecular dynamics simulations demonstrate differential biasing of substrate orientations and conformations within the active sites of FabA and FabZ such that FabZ is preorganized to catalyze only dehydration, while FabA is primed for both dehydration and isomerization.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 484-495 ◽  
Author(s):  
Mariano A. Martinez ◽  
Diego de Mendoza ◽  
Gustavo E. Schujman

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid biosynthesis. The molecular mechanisms of regulation of the acpP structural gene, as well as the function of its gene product, are poorly characterized in Bacillus subtilis and other Gram-positive organisms. Here, we report that transcription of acpP takes place from two different promoters: PfapR and PacpP. Expression of acpP from PfapR is coordinated with a cluster of genes involved in lipid synthesis (the fapR operon); the operon consists of fapR-plsX-fabD-fabG-acpP. PacpP is located immediately upstream of the acpP coding sequence, and is necessary and sufficient for normal fatty acid synthesis. We also report that acpP is essential for growth and differentiation, and that ACP localizes in the mother-cell compartment of the sporangium during spore formation. These results provide the first detailed characterization of the expression of the ACP-encoding gene in a Gram-positive bacterium, and highlight the importance of this protein in B. subtilis physiology.


Sign in / Sign up

Export Citation Format

Share Document