Class Specificity of Avian and Mammalian Sera in Regards to Myogenic Cell Growth in vitro. POSSIBLE ROLE OF TRANSFERRIN IN THE SPECIFICITY (class specificity of serum/cell growth/culture medium/muscle cell culture)

1982 ◽  
Vol 24 (1) ◽  
pp. 115-123 ◽  
Author(s):  
YASUKO HAGIWARA ◽  
EIJIRO OZAWA
2020 ◽  
Author(s):  
Louis Shekhtman ◽  
Miquel Navasa ◽  
Natasha Sansone ◽  
Gonzalo Crespo ◽  
Gitanjali Subramanya ◽  
...  

AbstractWhile the liver, specifically hepatocytes, are widely accepted as the main source for hepatitis C virus (HCV) production, the role of the liver/hepatocytes in the clearance of circulating HCV remains largely unknown. Here we evaluated the function of the liver/hepatocytes in clearing virus from the circulation by investigating viral clearance during liver transplantation and from culture medium in vitro. Frequent HCV kinetic data during liver transplantation were recorded from 5 individuals throughout the anhepatic (AH) phase and for 4 hours after reperfusion (RP), along with recordings of fluid balances. Using mathematical modeling, the serum viral clearance rate, c, was estimated. Analogously, we monitored the clearance rate of HCV at 37°C from culture medium in vitro in the absence and presence of chronically infected Huh7 human hepatoma cells. During the AH phase, in 3 transplant cases viral levels remained at pre-AH levels, while in the other 2 cases HCV declined (half-life, t1/2~1h). Immediately post-RP, virus declined in a biphasic manner in Cases 1-4 consisting of an extremely rapid (median t1/2=5min) decline followed by a slower decline (HCV t1/2=67min). In Case 5, HCV remained at the same level post-RP as at the end of AH. Declines in virus level were not explained by adjusting for dilution from IV fluid and blood products. Consistent with what was observed in the majority of patients in the anhepatic phase, the t1/2 of HCV in cell culture was much longer in the absence of chronically HCV-infected Huh7 cells. Therefore, kinetic and modeling results from both in vivo liver transplantation cases and in vitro cell culture studies suggest that the liver plays a major role in clearing HCV from the circulation.


1997 ◽  
Vol 110 (9) ◽  
pp. 1083-1089 ◽  
Author(s):  
S. Bonavaud ◽  
C. Charriere-Bertrand ◽  
C. Rey ◽  
M.P. Leibovitch ◽  
N. Pedersen ◽  
...  

Urokinase can form a tripartite complex binding urokinase receptor (uPAR) and plasminogen activator inhibitor type-1 (PAI-1), a component of the extracellular matrix (ECM). The components of the tripartite complex are modulated throughout the in vitro myogenic differentiation process. A series of experiments aimed at elucidating the role of the urokinase tripartite complex in the fusion of human myogenic cells were performed in vitro. Myogenic cell fusion was associated with increased cell-associated urokinase-type plasminogen activator (uPA) activity, cell-associated uPAR, and uPAR occupancy. Incubation of cultures with either uPA anticatalytic antibodies, or the amino-terminal fragment of uPA (ATF), which inhibits competitively uPA binding to its receptor, or anti-PAI-1 antibodies, which inhibit uPA binding to PAI-1, resulted in a 30 to 47% decrease in fusion. Incubation of cultures with the plasmin inhibitor aprotinin did not affect fusion. Decreased fusion rates induced by interfering with uPAR/uPA/PAI-1 interactions were not associated with significant changes in mRNA levels of both the myogenic regulatory factor myogenin and its inhibitor of DNA binding, Id. Incubation of cultures with purified uPA resulted in a decrease in fusion, likely due to a competitive inhibition of PAI-1 binding of endogenous uPA. We conclude that muscle cell fusion largely depends on interactions between the members of the urokinase complex (uPAR/uPA/PAI-1), but does not require proteolytic activation of plasmin. Since the intrinsic muscle cell differentiation program appears poorly affected by the state of integrity of the urokinase complex, and since cell migration is a prerequisite for muscle cell fusion in vitro, it is likely that the urokinase system is instrumental in fusion through its connection with the cell migration process. Our results suggest that the urokinase tripartite complex may be involved in cell migration in a non conventional way, playing the role of an adhesion system bridging cell membrane to ECM.


1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document